

 stdlib

 v6.0.1

 [image: Logo]

 Table of contents

 	STDLIB Application

 	STDLIB Release Notes

 	User's Guides

 	Introduction

 	The Erlang I/O Protocol

 	Using Unicode in Erlang

 	Uniform Resource Identifiers

 	References

 	assert.hrl

 	

 	Modules

 	ALGORITHMS

 	erl_tar

 	rand

 	random

 	zip

 	CODE

 	beam_lib

 	epp

 	erl_anno

 	erl_eval

 	erl_expand_records

 	erl_features

 	erl_id_trans

 	erl_internal

 	erl_lint

 	erl_parse

 	erl_pp

 	erl_scan

 	ms_transform

 	DATA STRUCTURES

 	array

 	dets

 	dict

 	digraph

 	digraph_utils

 	ets

 	gb_sets

 	gb_trees

 	json

 	orddict

 	ordsets

 	proplists

 	qlc

 	queue

 	sets

 	sofs

 	DATATYPES

 	binary

 	lists

 	maps

 	math

 	DATE & TIME

 	calendar

 	timer

 	NODES

 	argparse

 	escript

 	peer

 	slave

 	win32reg

 	PROCESSES

 	gen_event

 	gen_fsm

 	gen_server

 	gen_statem

 	log_mf_h

 	pool

 	proc_lib

 	supervisor

 	supervisor_bridge

 	sys

 	SHELL

 	c

 	edlin

 	edlin_expand

 	shell

 	shell_default

 	shell_docs

 	STRINGS

 	base64

 	erl_error

 	file_sorter

 	filelib

 	filename

 	io

 	io_lib

 	re

 	string

 	unicode

 	uri_string

STDLIB Application

 Description

The STDLIB application is mandatory in the sense that the minimal system based
on Erlang/OTP consists of Kernel and STDLIB. The STDLIB application contains no
services.

 Configuration

The following configuration parameters are defined for the STDLIB application.
For more information about configuration parameters, see the
app(4) module in Kernel.
	shell_esc = icl | abort - Can be used to change the
behavior of the Erlang shell when ^G is pressed.

	restricted_shell = module() - Can be used to run
the Erlang shell in restricted mode.

	shell_catch_exception = boolean() - Can be
used to set the exception handling of the evaluator process of Erlang shell.

	shell_expand_location = above | below - Sets
where the tab expansion text should appear in the shell. The default is
below. This will open a pager below the cursor that is scrollable one line
at a time with Up/Down arrow keys or 5 lines at a time with PgUp/PgDn.

	shell_history_length = integer() >= 0 - Can be
used to determine how many commands are saved by the Erlang shell. See
edlin for more.

	shell_keymap = #{} - Can be used to override the
default keymap configuration for the shell.

	format_shell_func = {Mod, Func} | string() | default - Can be used to set the formatting of the Erlang shell output. This has
an effect on commands that have been submitted and how it is saved in history
or if the formatting hotkey is pressed while editing an expression (Alt-f by
default). You can specify a Mod:Func/1 that expects the whole expression as a
string and returns a formatted expressions as a string. See
shell:format_shell_func/1 for how to set it from inside the shell.
If instead a string is provided, it will be used as a shell command. Your
command must include ${file} somewhere in the string, for the shell to know
where the file goes in the command.
-stdlib format_shell_func "\"emacs -batch \${file} -l ~/erlang-format/emacs-format-file -f emacs-format-function\""
-stdlib format_shell_func "{shell, erl_pp_format_func}"

	shell_prompt_func = {Mod, Func} | default - where
	Mod = atom()
	Func = atom()

Can be used to set a customized Erlang shell prompt function.

	shell_multiline_prompt = {Mod, Func} | string() | default - where
	Mod = atom()
	Func = atom()

Can be used to set a customized multiline shell prompt function. The multiline
prompt function takes the main prompt as its only parameter.

	shell_saved_results = integer() >= 0 - Can be
used to determine how many results are saved by the Erlang shell.

	shell_session_slogan = string() | fun() -> string()) - The slogan printed when starting an Erlang shell.
Example:
$ erl -stdlib shell_session_slogan '"Test slogan"'
Erlang/OTP 26 [DEVELOPMENT] [erts-13.0.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Test slogan
1>

	shell_slogan = string() | fun(() -> string()) - The
slogan printed when starting the Erlang shell subsystem. Example:
$ erl -stdlib shell_slogan '"Test slogan"'
Test slogan
Eshell V13.0.2 (abort with ^G)
1>
The default is the return value of
erlang:system_info(system_version).

	shell_strings = boolean() - Can be used to determine
how the Erlang shell outputs lists of integers.

 See Also

app(4), application, shell

STDLIB Release Notes

This document describes the changes made to the STDLIB application.

 STDLIB 6.0.1

 Fixed Bugs and Malfunctions

	Fix so that missing -doc({file, File}) files only result in a warning and not an error.
Own Id: OTP-19099 Aux Id: PR-8542

	Fixed json bugs, json:encode_key_value_list/2 did not generate arrays and json:decode/3 did not invoke the user callback for 0.
Own Id: OTP-19106 Aux Id: PR-8581 PR-8519

 STDLIB 6.0

 Fixed Bugs and Malfunctions

	The specs in module binary has been updated to reflect what is allowed by the documentation.
Own Id: OTP-18684 Aux Id: PR-7481

	Several functions in the binary module would accept arguments of the wrong type under certain circumstances. In this release, they now raise an exception when incorrect types are given.
The following functions would accept an invalid pattern if the subject binary was empty or if the {scope,{0,0}} option was given:
binary:match/2,3,
binary:matches/2,3,
binary:replace/3,4, and
binary:split/2,3
The call binary:copy(<<1:1>>, 0) would return an empty binary instead of raising an exception. Similarly, calls to binary:part/2,3 attempting to extract 0 bytes at position 0 of a bitstring would return an empty binary instead of raising an exception.
Own Id: OTP-18743 Aux Id: PR-7607, PR-7628

	The documentation for the preprocessor now mentions that defined(Name) can be called in the condition for an -if or -elif directive to test whether Name is the name of a defined macro. (This feature was implemented in OTP 21.)
If a function call in an -if or -elif with a name that is not the name of a guard BIF, there would not be a compilation error, but would instead cause the lines following the directive to be skipped. This has now been changed to be a compilation error.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18784 Aux Id: GH-7706, PR-7726

	get_until requests using the I/O protocol now correctly return a binary or list when eof is the last item returned by the callback.
Own Id: OTP-18930 Aux Id: PR-7993, GH-4992

	The error handling the simple_one_for_one supervisor has been enhanced. A transient child returning ignore will no longer cause a crash.
Also, automatic shutdown has been disabled because it does not make sense for this supervisor type. That is was allowed is considered a bug. Therefore, we don't consider this an incompatible change.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19029 Aux Id: PR-8230

	Fix shell expansion to not crash when expanding a map with non-atom keys and to not list zero arity functions when an argument has been given.
Own Id: OTP-19073 Aux Id: PR-8375 GH-8365

 Improvements and New Features

	The functions is_equal/2, map/2, and filtermap/2 have been added to the modules sets, ordsets, and gb_sets.
Own Id: OTP-18622 Aux Id: PR-7183, PR-7232

	The compiler now emits nicer error message for function head mismatches.
For example, given:
a() -> ok;
a(_) -> error.
Erlang/OTP 26 and earlier would emit a diagnostic similar to:
t.erl:6:1: head mismatch
% 6| a(_) -> error.
% | ^
while in Erlang/OTP 27 the diagnostic is similar to:
t.erl:6:1: head mismatch: function a with arities 0 and 1 is regarded as two distinct functions. Is the number of arguments incorrect or is the semicolon in a/0 unwanted?
% 6| a(_) -> error.
% | ^
Own Id: OTP-18648 Aux Id: PR-7383

	zip:create/2,3 will now tolerate POSIX timestamps in the provided file_info records.
Own Id: OTP-18668

	The callback function gen_statem:handle_event/4 has been cached in the gen_statem engine to optimize callback call speed.
Own Id: OTP-18671 Aux Id: PR-7419

	The type beam_lib:beam/0 is now exported.
Own Id: OTP-18716 Aux Id: PR-7534

	The documentation for the binary module has been improved.
Own Id: OTP-18741 Aux Id: PR-7585

	binary:replace/3,4 now supports using a fun for supplying the replacement binary.
Own Id: OTP-18742 Aux Id: PR-7590

	Triple-Quoted Strings has been implemented as per EEP 64. See String in the Reference Manual.
Example:
1> """
 a
 b
 c
 """.
"a\nb\nc"
Adjacent string literals without intervening white space is now a syntax error, to avoid possible confusion with triple-quoted strings. For example:
1> "abc""xyz".
"xyz".
* 1:6: adjacent string literals without intervening white space
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18750 Aux Id: OTP-18746, PR-7313, PR-7451

	The new function proc_lib:set_label/1 can be used to add a descriptive term to any process that does not have a registered name. The name will be shown by tools such as c:i/0, observer, and it will be included in crash reports produced by processes using gen_server, gen_statem, gen_event, and gen_fsm.
The label for a process can be retrieved by calling proc_lib:get_label/1.
Note that those functions work on any process, not only processes that use proc_lib.
Example:
1> self().
<0.90.0>
2> proc_lib:set_label(my_label).
ok
3> i().
 .
 .
 .
<0.90.0> erlang:apply/2 2586 75011 0
my_label c:pinfo/2 51
4> proc_lib:get_label(self()).
my_label
Own Id: OTP-18789 Aux Id: PR-7720, PR-8003

	-callback attributes has been added to modules sys and erl_error.
Own Id: OTP-18793 Aux Id: PR-7703

	Several new functions that accept funs have been added to module timer.
Functions apply_after/2, apply_interval/2, and apply_repeatedly/2 accept a nullary fun as the second argument, while functions apply_after/3, apply_interval/3, and apply_repeatedly/3 accept an n-ary fun as the second and a list of n arguments for the fun as the third argument.
Own Id: OTP-18808 Aux Id: PR-7649

	Sigils on string literals have been implemented as per EEP 66, that is: binary and string sigils in verbatim and escape characters variants, as well as a default (vanilla) Sigil. All for ordinary strings and for triple-quoted strings (EEP 64). See Sigils in the Reference Manual.
Examples:
1> ~"Björn".
<<"Björn"/utf8>>
2> ~b"Björn".
<<"Björn"/utf8>>
3> ~S"\s*(\w+)".
"\\s*(\\w+)"
4> ~B"\s*(\w+)".
<<"\\s*(\\w+)">>
Own Id: OTP-18825 Aux Id: OTP-18750, PR-7684

	Functions shell:default_multiline_prompt/1, shell:inverted_space_prompt/1, and
shell:prompt_width/1 have been exported to help with custom prompt implementations.
Own Id: OTP-18834 Aux Id: PR-7675

	The shell now pages long output from the documentation help command (h(Module)), auto completions and the search command.
Own Id: OTP-18846 Aux Id: PR-7845

	The M-h hotkey (Alt/Option-h) now outputs help for the module or function directly before the cursor.
Own Id: OTP-18847 Aux Id: PR-7846

	Added support for adding a custom code formatter that formats your multi-line shell commands in your preferred formatting on submission. See shell:format_shell_func/ and shell:erl_pp_format_func/1.
Own Id: OTP-18848 Aux Id: PR-7847

	Added shell functions for viewing, forgetting and saving locally defined functions, types and records.
Own Id: OTP-18852 Aux Id: PR-7844

	Added string:jaro_similarity/2, which can be used to calculate the similarity between two strings.
Own Id: OTP-18865 Aux Id: PR-7879

	The new function ets:update_element/4 is similar to ets:update_element/3, but takes a default tuple as the fourth argument, which will be inserted if no previous record with that key exists.
Own Id: OTP-18870 Aux Id: PR-7857

	Added functions to retrieve the next higher or lower key/element from gb_trees and gb_sets, as well as returning iterators that start at given keys/elements.
Own Id: OTP-18874 Aux Id: PR-7745

	When the shell built-in function c/1,2 is used to re-compile a module, the current working directory of the original compilation is now added to the include path.
Own Id: OTP-18908 Aux Id: PR-7957

	The timer module now uses a private table for its internal state, slightly improving its performance.
Own Id: OTP-18914 Aux Id: PR-7973

	EEP-59 - Documentation Attributes has been implemented.
Documentation attributes can be used to document functions, types, callbacks, and modules.
The keyword -moduledoc "Documentation here". is used to document modules, while -doc "Documentation here". can be used on top of functions, types, and callbacks to document them, respectively.
	Types, callbacks, and function documentation can be set to hidden either via -doc false or -doc hidden. When documentation attributes mark a type as hidden, they will not be part of the documentation.

	The documentation from moduledoc and doc gets added by default to the binary beam file, following the format of EEP-48.

	Using the compiler flag warn_missing_doc will raise a warning when
-doc attributes are missing in exported functions, types, and callbacks.

	Using the compiler flag warn_missing_spec_documented will raise a warning when
spec attributes are missing in documented functions, types, and callbacks.

	moduledocs and docs may refer to external files to be embedded, such as -doc {file, "README.md"}., which refers to the file README.md found in the current working directory.

	The compiler warns about exported functions whose specs refer to hidden types. Thus, there will be warnings when a hidden type (meaning, the type is not part of the documentation) gets used in an exported function.

Own Id: OTP-18916 Aux Id: PR-7936

	New ets functions ets:first_lookup/1, ets:next_lookup/2, ets:prev_lookup/2 and ets:last_lookup/1. Example: ets:next_lookup/1 is equivalent to ets:next/2 followed by ets:lookup/2 with the next key. The new combined functions are more efficient and with guaranteed atomicity.
Own Id: OTP-18923 Aux Id: PR-6791

	The maybe expression is now enabled by default.
To use maybe as an atom, it needs to be single-quoted. Alternatively, the maybe expression can be disabled by disabling the maybe_expr feature. That can be done by placing the following the line at the beginning of an Erlang source file:
-feature(maybe_expr, disable).
Another way to disable the maybe_expr feature is by passing the -disable-feature option to erlc:
erlc -disable-feature maybe_expr some_file.erl
Own Id: OTP-18944 Aux Id: PR-8067

	The compiler will now raise a warning when updating record/map literals. As an example, consider this module:
-module(t).
-export([f/0]).
-record(r, {a,b,c}).

f() ->
 #r{a=1}#r{b=2}.
The compiler raises the following warning:
1> c(t).
t.erl:6:12: Warning: expression updates a literal
% 6| #r{a=1}#r{b=2}.
% | ^
Own Id: OTP-18951 Aux Id: PR-8069

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Optimized ets:foldl and ets:foldr to use new ets:next_lookup. Also made them immune against table renaming.
Own Id: OTP-18993 Aux Id: PR-8048

	Windows now supports all functions in math.
Own Id: OTP-19001 Aux Id: PR-8164

	erl_lint (and by extension the compiler) will now warn for code using deprecated callbacks.
The only callback currenly deprecated is format_status/2 in gen_server, gen_event and gen_statem.
You can use nowarn_deprecated_callback to silence the warning.
Own Id: OTP-19010 Aux Id: PR-8205

	There is a new module json for encoding and decoding JSON.
Both encoding and decoding can be customized. Decoding can be done in a SAX-like fashion and handle multiple documents and streams of data.
Own Id: OTP-19020 Aux Id: PR-8111

 STDLIB 5.2.3

 Fixed Bugs and Malfunctions

	Fix shell expansion of -type a() :: $a. in the erlang shell.
Own Id: OTP-19062

	Fix the shell Job Control Mode to not crash when typing TAB or CTRL+R.
Own Id: OTP-19072 Aux Id: PR-8391

 STDLIB 5.2.2

 Fixed Bugs and Malfunctions

	Attempting to use the maybe construct in a macro argument could crash the compiler.
Own Id: OTP-19031 Aux Id: GH-8268

 STDLIB 5.2.1

 Fixed Bugs and Malfunctions

	The help texts shown by argparse will now display sub-command arguments in the correct order.
Own Id: OTP-18900 Aux Id: PR-7945, GH-7934

	Clarified the argparse documentation regarding the user-defined help template.
Own Id: OTP-18937

	Fix shell expansion to not crash when expanding invalid using invalid atoms.
Own Id: OTP-18953 Aux Id: GH-8016 PR-8075

 STDLIB 5.2

 Fixed Bugs and Malfunctions

	Make shell_docs correctly trim the newline at the end of code blocks.
Own Id: OTP-18777 Aux Id: PR-7663

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Fixed a bug where autocompletion could crash the shell when trying to expand a
nested tuple.
Own Id: OTP-18822 Aux Id: PR-7796

	Removed auto closing feature, in autocompletion, for function arguments,
tuples, records and maps, since this could interfere with autocompletion of
atoms.
Own Id: OTP-18823

	Fixed a bug where autocompletion string formatting would remove suggestions
that had the same name but different case.
Own Id: OTP-18824

	Fix so that ctrl+h, ctrl+backspace in the shell only removes one character
instead of a whole word.
Own Id: OTP-18826 Aux Id: PR-7797

	Fix so that its possible to override the default keyboard shortcuts for the
shell.
Own Id: OTP-18827 Aux Id: PR-7797

	Allow shell local func v(), in a restricted shell
Own Id: OTP-18828 Aux Id: PR-7799

	Report syntax error when writing an invalid attribute like '1> -hej.'
Own Id: OTP-18829 Aux Id: PR-7799

	When attempting to match part of a record in the key of a map generator, the
entire record would be matched.
Own Id: OTP-18866 Aux Id: GH-7875, PR-7878

 Improvements and New Features

	The warning for accidental use of a future triple-quoted string delimiter has
been upgraded to instead warn for adjacent strings without intervening white
space, which effectively is the same at a string start, but also covers the
same situation at a string end.
Own Id: OTP-18821 Aux Id: OTP-18746

	The removal of the deprecated slave module, originally planned for OTP 27,
has been postponed to OTP 29.
Own Id: OTP-18840 Aux Id: PR-7629

	Guards have been added to gen_*:start* API functions to catch bad arguments
earlier. Before this change, in some cases, a bad argument could tag along and
cause the server to fail later, right after start.
Own Id: OTP-18857 Aux Id: GH-7685

 STDLIB 5.1.1

 Improvements and New Features

	Garbage collect the shell process when reducing the amount of saved history
and results.
Own Id: OTP-18773 Aux Id: PR-7691

 STDLIB 5.1

 Fixed Bugs and Malfunctions

	The compiler could run forever when compiling a call to
is_record/3 with a huge positive tuple size. The call
is_record(A, a, 0) would crash the compiler when used in a
function body. When used in a guard the compiler would emit incorrect code
that would accept {a> as a record.
Own Id: OTP-18605 Aux Id: GH-7298, GH-7317

	Fix bug in ets:tab2file that could make it fail if another Erlang process
created the same file at the same time.
Own Id: OTP-18614 Aux Id: GH-7162, PR-7237

	An {else_clause,Value} exception will now be reported nicely in the shell.
Own Id: OTP-18616 Aux Id: GH-7258

	Correct return value for error case, so that it matches the documented and
intended return value {error, {already_started, pid()} when local
registered names are used.
Own Id: OTP-18627 Aux Id: PR-7072

	sys:get_state/1,2 and sys:replace_state/2,3 has been corrected to handle a
state named error as a state name, not as a failed system callback.
For the standard server behaviours this was an issue only for gen_statem
(and gen_fsm) when the state name was error, and for gen_server if the
complete state was {error,_}.
Own Id: OTP-18633

	Multiple problems were fixed in filelib:safe_relative_path/2. If its second
argument was a path that contained symbolic links, an incorrect result patch
could be returned. Also, paths were sometimes falsely considered unsafe.
Own Id: OTP-18655 Aux Id: GH-6460, PR-7208

	Fix deadlock when erl.exe is used as part of a pipe on Windows and trying to
set the encoding of the standard_io device.
Own Id: OTP-18675 Aux Id: PR-7473 GH-7459

	Expanded the documentation about how to use the standard_io,
standard_error and user I/O devices.
Added the types io:standard_io/0,
io:standard:error/0 and io:user/0.
Own Id: OTP-18676 Aux Id: PR-7473 GH-7459

	Fix h/2,3 to properly render multi-clause documentation.
Own Id: OTP-18683 Aux Id: PR-7502

	Timers created by timer:apply_after/4, apply_interval/4, and
apply_repeatedly/4 would silently fail to do the apply if it was not
possible to spawn a process when the timer expired. This has now been
corrected, and if the spawn fails, the system will be taken down producing a
crash dump.
Own Id: OTP-18759 Aux Id: GH-7606

	When an Erlang source file lacked a module definition, there would be a
spurious "module name must not be empty" diagnostic for each spec in the file.
Own Id: OTP-18763 Aux Id: GH-7655

 Improvements and New Features

	The argument descriptions for option types in argparse have been made less
ambiguous.
Own Id: OTP-18679 Aux Id: ERIERL-965

	Clarified the documentation of normal shutdown reason on gen_server:call/2,3
Own Id: OTP-18690 Aux Id: PR-7511, GH-7510

	Pattern matching and equivalence (=:=, =/=) comparisons on 0.0 will now
raise a warning, as it will no longer be considered equivalent to -0.0 in
OTP 27.
If a match on 0.0 specifically is desired (distinct from -0.0), the
warning can be suppressed by writing +0.0 instead.
The arithmetic comparison operators are unaffected, including arithmetic
equality (==).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18696

	The semantics of the gen_{server,statem,event} behaviour's synchronous start
behaviour introduced in OTP-26.0 with OTP-18471, has been clarified in the
documentation.
Own Id: OTP-18705 Aux Id: GH-7524, OTP-18471, GH-6339, PR-6843

	Added functionality to set a custom multiline prompt.
Own Id: OTP-18736 Aux Id: PR-7564

	A warning for (accidental use of) Triple-Quoted Strings has been implemented
as per
EEP 64.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18746 Aux Id: PR-7313, PR-7456

	The keyboard shortcuts for the shell are now configurable.
Own Id: OTP-18754 Aux Id: PR-7604 PR-7647

 STDLIB 5.0.2

 Fixed Bugs and Malfunctions

	Fix bug where when you entered Alt+Enter in the terminal, the cursor would
move to the last line, instead of moving to the next line.
Own Id: OTP-18580 Aux Id: PR-7242

	Fix eof handling when reading from stdin when erlang is started using
-noshell.
Own Id: OTP-18640 Aux Id: PR-7384 GH-7368 GH-7286 GH-6881

	Fixed problem where output would disappear if it was received after a prompt
was written in the shell.
Own Id: OTP-18652 Aux Id: PR-7242

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 5.0.1

 Fixed Bugs and Malfunctions

	The POSIX error exdev was sometimes incorrectly described as "cross domain
link" in some error messages.
Own Id: OTP-18578 Aux Id: GH-7213

 STDLIB 5.0

 Fixed Bugs and Malfunctions

	All process calls in dets have been updated to use the receive queue
optimizations.
Own Id: OTP-18275 Aux Id: PR-6045

	proc_lib:start*/* has become synchronous when the started process fails.
This requires that a failing process use a new function
proc_lib:init_fail/2,3, or exits, to indicate failure. All OTP behaviours
have been fixed to do this.
All these start functions now consume the 'EXIT' message from a process link
for all error returns. Previously it was only the start_link/* functions
that did this, and only when the started function exited, not when it used
init_ack/1,2 or init_fail/2,3 to create the return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18471 Aux Id: GH-6339, PR-6843

	Fixed a bug where file:read(standard_io, ...) unexpectedly returned eof in
binary mode.
Own Id: OTP-18486 Aux Id: PR-6881

	In the shell, v(N) would fail to retrieve the command if the command's
return value was undefined.
Own Id: OTP-18548 Aux Id: PR-6967

 Improvements and New Features

	The Erlang shell has been improved to support the following features:
	Auto-complete variables, record names, record field names, map keys,
function parameter types and filenames.
	Open external editor in the shell (with C-o) to edit the current expression
in an editor.
	Support defining records (with types), functions and function typespecs, and
custom types in the shell.
	Do not save pager commands, and input to io:getline in history.

Own Id: OTP-14835 Aux Id: PR-5924

	Gen_server now caches external functions for use in handle_call, handle_cast
and handle_info.
Own Id: OTP-15597 Aux Id: PR-5831

	The TTY/terminal subsystem has been rewritten by moving more code to Erlang
from the old linked-in driver and implementing all the I/O primitives needed
in a NIF instead.
On Unix platforms the user should not notice a lot of difference, besides
better handling of unicode characters and fixing of some long standing bugs.
Windows users will notice that erl.exe has the same functionality as a normal
Unix shell and that werl.exe has been removed and replaced with a symlink to
erl.exe. This makes the Windows Erlang terminal experience identical to that
of Unix.
The re-write brings with it a number of bug fixes and feature additions:
	The TTY is now reset when Erlang exits, fixing zsh to not break when
terminating an Erlang session.
	standard_error now uses the same unicode mode as standard_io.
	Hitting backspace when searching the shell history with an empty search
string no longer breaks the shell.
	Tab expansion now works on remote nodes started using the JCL interface.
	It is now possible to configure the shell slogan and the session slogans
(that is the texts that appear when you start an Erlang shell). See the
kernel documentation for more details.
	Added shell:start_interactive for starting the interactive shell from a
non-interactive Erlang session (for example an escript).
	On Windows, when starting in detached mode the standard handler are now set
to nul devices instead of being unset.
	Standard I/O now always defaults to unicode mode if supported. Previously
the default was latin1 if the runtime system had been started with
-oldshell or -noshell (for example in an escript). To send raw bytes
over standard out, one now explicitly has to specify
io:setopts(standard_io, [{encoding, latin1}]).

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17932 Aux Id: PR-6144 GH-3150 GH-3390 GH-4343 GH-4225

	Added the zip:zip_get_crc32/2 function to retrieve the CRC32 checksum from
an opened ZIP archive.
Own Id: OTP-18159 Aux Id: PR-6904

	Added the options post_process_args and detached to the peer:start
function.
Own Id: OTP-18176 Aux Id: PR-6118

	The re:replace/3,4 functions now accept a fun as the replacement argument.
Own Id: OTP-18221 Aux Id: PR-6197

	The performance of the base64 module has been significantly improved. For
example, on an x86_64 system with the JIT both encode and decode are more than
three times faster than in Erlang/OTP 25.
Own Id: OTP-18228 Aux Id: GH-5639

	Improved implementation of timer:apply_interval/4 reducing load on the timer
server, and introduction of the new function timer:apply_repeatedly/4.
timer:apply_repeatedly/4 is similar to timer:apply_interval/4, but
timer:apply_repeatedly/4 prevents parallel execution of triggered apply
operations which timer:apply_interval/4 does not.
Own Id: OTP-18236 Aux Id: PR-6256

	The base64 module now supports encoding and decoding with an alternate URL
safe alphabet, and an option for accepting or adding missing = padding
characters.
Own Id: OTP-18247 Aux Id: PR-6280, PR-6711

	Add shell:whereis/0 which can be used to locate the current shell process.
Own Id: OTP-18272 Aux Id: PR-6279

	The Erlang shell's auto-completion when typing tab has been changed to
happen after the editing current line instead of before it.
This behaviour can be configured using a the shell_expand_location STDLIB
configuration parameter.
Own Id: OTP-18278 Aux Id: PR-6260

	New function ets:lookup_element/4 with a Default argument returned if the
key did not exist in the table. The old ets:lookup_element/3 raises a
badarg exception which can be both inconvenient and slower.
Own Id: OTP-18279 Aux Id: PR-6234

	Typing Ctrl+L in a shell now clears the screen and redraws the current line
instead of only redrawing the current line. To only redraw the current line,
you must now type Alt+L. This brings the behaviour of Ctrl+L closer to how
bash and other shells work.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18285 Aux Id: PR-6262

	peer nodes using standard_io connections now include standard error from
the node in the io stream from the started node.
Own Id: OTP-18287 Aux Id: PR-5955

	A limitation in the binary syntax has been removed. It is now possible to
match binary patterns in parallel. Example: <<A:8>> = <<B:4,C:4>> = Bin
Own Id: OTP-18297 Aux Id: GH-6348

	Improve type specification of unicode:characters_to_list().
Own Id: OTP-18301 Aux Id: PR-6350

	In the lists module, the zip family of functions now takes options to
allow handling lists of different lengths.
Own Id: OTP-18318 Aux Id: PR-6347

	It is documented that $\^X is the ASCII code for Control X, where X is an
uppercase or lowercase letter. However, this notation would work for any
character X, even then it didn't make sense.
In Erlang/OTP 26, it is now documented that the following characters are also
allowed to follow the \^ characters: @, [, \,], ^, _, and ?.
Attempt to use other characters will be rejected with a compiler error.
The value for $\^? is now 127 (instead of 31 as in earlier releases).
Own Id: OTP-18337 Aux Id: GH-6477, PR-6503

	The binary:encode_hex/2 function has been added to allow the encoded
hexadecimal digits to be in either lower or upper case.
Own Id: OTP-18354 Aux Id: PR-6297

	Variants of timer:tc() with user specified time unit have been introduced.
Own Id: OTP-18355 Aux Id: PR-6507

	New function math:tau/0. Returns 2*math:pi().
Own Id: OTP-18361 Aux Id: PR-6536

	The BIFs min/2 and max/2 are now allowed to be used
in guards and match specs.
Own Id: OTP-18367 Aux Id: GH-6544

	Optimized gen_server:multi_call().
Own Id: OTP-18385 Aux Id: PR-6698

	Map comprehensions as suggested in EEP 58 has now been implemented.
Own Id: OTP-18413 Aux Id: EEP-58, PR-6727

	Some map operations have been optimized by changing the internal sort order of
atom keys. This changes the (undocumented) order of how atom keys in small
maps are printed and returned by maps:to_list/1 and maps:next/1. The new
order is unpredictable and may change between different invocations of the
Erlang VM.
For applications where order is important, there is a new function
maps:iterator/2 for creating iterators that return the map elements in a
deterministic order. There are also new modifiers k and K for the format
string for io:format() to support printing map elements
ordered.
Own Id: OTP-18414 Aux Id: PR-6151

	Make gen_server fail "silently" with a new return value for init/1.
Own Id: OTP-18423 Aux Id: https://github.com/erlang/backlog/issues/142

	Improved the selective receive optimization, which can now be enabled for
references returned from other functions.
This greatly improves the performance of gen_server:send_request/3,
gen_server:wait_response/2, and similar functions.
Own Id: OTP-18431 Aux Id: PR-6739

	It is no longer necessary to enable a feature in the runtime system in order
to load modules that are using it. It is sufficient to enable the feature in
the compiler when compiling it.
That means that to use feature maybe_expr in Erlang/OTP 26, it is sufficient
to enable it during compilation.
In Erlang/OTP 27, feature maybe_expr will be enabled by default, but it will
be possible to disable it.
Own Id: OTP-18445

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18474 Aux Id: PR-6895

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	Support has been added in ms_transform for the actions caller_line/0,
current_stacktrace/0, and current_stacktrace/1.
Own Id: OTP-18494 Aux Id: PR-6924

	The family of enumeration functions in module lists has been extended with
enumerate/3 that allows a step value to be supplied.
Own Id: OTP-18495 Aux Id: PR-6943

	Update Unicode to version 15.0.0.
Own Id: OTP-18500

	The regular expression library powering the re module is likely to be
changed in Erlang/OTP 27. See
Upcoming Potential Incompatibilities.
Own Id: OTP-18511 Aux Id: PR-7017

	Improved the performance of sets:subtract/2 when subtracting a small number
of elements.
Own Id: OTP-18515 Aux Id: GH-6990

	The linter will no longer raise warnings for underspecified opaque types.
Own Id: OTP-18518 Aux Id: GH-7015

	Added the new built-in type dynamic/0 introduced in EEP-61, improving
support for gradual type checkers.
Own Id: OTP-18522

	The by gen_statem previously used call proxy process that was used for
preventing late replies from reaching the client at timeout or connection loss
has been removed. It is no longer needed since process aliases take care of
this, are used, and supported by all Erlang nodes that an OTP 26 Erlang node
can communicate with.
Own Id: OTP-18537 Aux Id: PR-7081

	Added the argparse module for simplified argument handling in escripts and
similar.
Own Id: OTP-18558 Aux Id: PR-6852

	Added support for multiple line expressions and navigation in the shell. Added
new keybindings:
	navigate up (ctrl+up)/(alt+up)
	navigate down (ctrl+down)/(alt+down)
	insert newline in middle of line (alt+enter)
	navigate top (alt+<)/(alt+shift+up)
	navigate bottom (alt+>)/(alt+shift+down)
	clear current expression (alt+c)
	cancel search (alt+c)
	opening editor on mac (option+o)/(alt+o)

Modifies the prompt for new lines to make it clearer that the prompt has
entered multi-line mode. Supports terminal with small window size, recommend
not go lower than 7 rows and 40 columns. Modifies the search prompt to support
multi-line statements. Redraw the prompt after continuing from JCL menu.
Own Id: OTP-18575 Aux Id: PR-7169

 STDLIB 4.3.1.4

 Fixed Bugs and Malfunctions

	Attempting to use the maybe construct in a macro argument could crash the compiler.
Own Id: OTP-19031 Aux Id: GH-8268

 STDLIB 4.3.1.3

 Improvements and New Features

	Garbage collect the shell process when reducing the amount of saved history
and results.
Own Id: OTP-18773 Aux Id: PR-7691

 STDLIB 4.3.1.2

 Fixed Bugs and Malfunctions

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 4.3.1.1

 Improvements and New Features

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18556

 STDLIB 4.3.1

 Fixed Bugs and Malfunctions

	The type specs in the erl_parse module has been updated to include the
maybe construct and the ! operator.
Own Id: OTP-18506 Aux Id: GH-6956

 STDLIB 4.3

 Fixed Bugs and Malfunctions

	Fixed a bug that would cause analysis to crash.
Own Id: OTP-18372 Aux Id: GH-6580

	Fixed a crash when formatting stack traces for error reports.
Own Id: OTP-18375 Aux Id: GH-6591

	Instead of crashing, the list_to_integer/1 and
list_to_integer/2 BIFs now raise the system_limit
exception for overlong lists that can't be converted to integers. Similarly,
the string:to_integer/1 BIF now returns {error,system_limit} for overlong
lists.
Own Id: OTP-18475 Aux Id: PR-6897

 Improvements and New Features

	Removal of non-necessary undefined types added to the state's supervisor
record.
Own Id: OTP-18393 Aux Id: PR-6666

 STDLIB 4.2

 Fixed Bugs and Malfunctions

	erl_tar can now read gzip-compressed tar files that are padded. There is a
new option compressed_one for file:open/2 that will read a single member
from a gzip file,
Own Id: OTP-18289 Aux Id: PR-6343

	A concurrent call to ets:rename could cause ets:delete_all_objects to fail
halfway through with badarg.
Own Id: OTP-18292 Aux Id: PR-6366

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

	The compiler could crash when using a record with complex field initialization
expression as a filter in a list comprehension.
Own Id: OTP-18336 Aux Id: GH-6501, PR-6502

	unicode:characters_to_binary() could build unnecessarily large call stack.
Own Id: OTP-18351 Aux Id: ERIERL-885, PR-6529

 Improvements and New Features

	Improve error message for ets:new/2 name clash. Say "name already exists"
instead of less specific "invalid options".
Own Id: OTP-18283 Aux Id: PR-6338

 STDLIB 4.1.1

 Fixed Bugs and Malfunctions

	peer nodes failed to halt when the process supervising the control
connection crashed. When an alternative control connection was used, this
supervision process also quite frequently crashed when the peer node was
stopped by the node that started it which caused the peer node to linger
without ever halting.
Own Id: OTP-18249 Aux Id: PR-6301

 STDLIB 4.1

 Fixed Bugs and Malfunctions

	Fixed inconsistency bugs in global due to nodeup/nodedown messages not
being delivered before/after traffic over connections. Also fixed various
other inconsistency bugs and deadlocks in both global_group and global.
As building blocks for these fixes, a new BIF erlang:nodes/2 has been
introduced and net_kernel:monitor_nodes/2 has been extended.
The -hidden and
-connect_all command line arguments did
not work if multiple instances were present on the command line which has been
fixed. The new kernel parameter
connect_all has also been introduced
in order to replace the -connect_all command line argument.
Own Id: OTP-17934 Aux Id: PR-6007

	Fix the public_key:ssh* functions to be listed under the correct release in
the Removed Functionality User's Guide.
Own Id: OTP-18139 Aux Id: PR-6060

	The type spec for format_status/1 in gen_statem, gen_server and
gen_event has been corrected to state that the return value is of the same
type as the argument (instead of the same value as the argument).
Own Id: OTP-18142 Aux Id: PR-6078

	If the timer server child spec was already present in kernel_sup but it
was not started, the timer server would fail to start with an
{error, already_present} error instead of restarting the server.
Own Id: OTP-18146 Aux Id: PR-5983

	When changing callback module in gen_statem the state_enter calls flag from
the old module was used in for the first event in the new module, which could
confuse the new module and cause malfunction. This bug has been corrected.
With this change some sys debug message formats have been modified, which
can be a problem for debug code relying on the format.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18239

 Improvements and New Features

	There is a new configure option, --enable-deterministic-build, which will
apply the deterministic compiler option when building Erlang/OTP. The
deterministic option has been improved to eliminate more sources of
non-determinism in several applications.
Own Id: OTP-18165 Aux Id: PR-5965

	The rfc339_to_system_time/1,2 functions now allows the minutes part to be
omitted from the time zone.
Own Id: OTP-18166 Aux Id: PR-6108

	The receive statement in gen_event has been optimized to not use selective
receive (which was never needed, and could cause severe performance
degradation under heavy load).
Own Id: OTP-18194 Aux Id: PR-6199

	Add new API function erl_features:configurable/0
Own Id: OTP-18199 Aux Id: PR-5790

 STDLIB 4.0.1

 Fixed Bugs and Malfunctions

	In the initial release of Erlang/OTP 25, the expression bound to the _
pseudo-field in a record initialization would always be evaluated once, even
if all other fields in the record were explicitly initialized. That would
break the use case of binding the expression error(...) to _ in order to
get an exception if not all fields were initialized.
The behavior of binding to _ has been reverted to the pre-OTP 25 behavior,
that is, to not evaluate the expression if all fields have been bound to
explicit values.
Own Id: OTP-18110 Aux Id: GH-6000

 STDLIB 4.0

 Fixed Bugs and Malfunctions

	Improve the Erlang code linter's check of unused types.
Own Id: OTP-17370 Aux Id: GH-4784

	Fix race condition in proc_lib:stop/3 where the process is not stopped when
the timeout given is very short.
Own Id: OTP-17480 Aux Id: GH-4853 PR-4872

	Maps are now fully supported in by ms_transform.
Own Id: OTP-17518 Aux Id: GH-4915

	Fix gen_server:call with the first argument as self() to throw an error
instead of failing with a timeout.
The same fix has also been done for gen_statem:call/3, gen_event:sync_notify/2
and any other functionality relying on the internal gen:call/3 function.
A similar fix was also done when using io:format/2 and the current
group_leader was set to the current process.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17544 Aux Id: PR-5008

	erl_pp printed unary - and + operators with a space between the operator and
the operand. This is fixed by not having any space in between.
Own Id: OTP-17566 Aux Id: PR-5095, GH-5093

	Adjust uri_string:normalize behavior for URIs with undefined port (URI string
with a port colon but no port value or URI map with port => undefined).
Remove redundant normalization from http_request module.
Before this change, normalize would not remove port subcomponent in such cases
and could for example return "http://localhost:" URI.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17627

	Fix reduction counting bug in re:run that caused the function to yield too
frequently when doing global matches.
Own Id: OTP-17661 Aux Id: PR-5165

	Fix the memory value returned from ets:info(Tid,memory) when the
read_concurrency option is used.
Before this fix the memory used by the scheduler specific lock cache lines was
not counted towards the total. This caused the returned memory usage to be
very incorrect on systems with many schedulers for tables with man locks.
Own Id: OTP-17832 Aux Id: PR-5494

	Avoid confusion by correcting the argument order in the gen_event crash log
printout.
Own Id: OTP-17878

	Fixed string:next_grapheme/1 to return an empty binary in the tail for
binary input for the last grapheme cluster.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18009 Aux Id: PR-5785

	Fixed type specifications of the supervisor:sup_name/0 and
supervisor:sup_ref/0 types.
Own Id: OTP-18034 Aux Id: PR-4661, GH-4622

	If a default record field initialization (_ = Expr) was used even though all
records fields were explicitly initialized, Expr would not be evaluated.
That would not be a problem, except when Expr would bind a variable
subsequently used, in which case the compiler would crash.
As an example, if record #r{} is defined to have only one field a, the
following code would crash the compiler:
#r{a=[],_=V=42}, V
To fix that problem, the compiler will make sure that Expr is always
evaluated at least once. The compiler will now rewrite the example to
essentially:
V=42, #r{a=[]}, V
Own Id: OTP-18083

 Improvements and New Features

	Users can now configure ETS tables with the {write_concurrency, auto}
option. This option forces tables to automatically change the number of locks
that are used at run-time depending on how much concurrency is detected. The
{decentralized_counters, true} option is enabled by default when
{write_concurrency, auto} is active.
Benchmark results comparing this option with the other ETS optimization
options are available here:
https://erlang.org/bench/ets_bench_result_lock_config.html
Own Id: OTP-15991 Aux Id: PR-5208

	The format_status/2 callback for gen_server, gen_statem and gen_event
has been deprecated in favor of the new format_status/1 callback.
The new callback adds the possibility to limit and change many more things
than the just the state, such as the last received message, the reason for
terminating and more events specific to each type of behavior. See the
respective modules documentation for more details.
Own Id: OTP-17351 Aux Id: GH-4673 PR-4952

	The timer module has been modernized and made more efficient, which makes
the timer server less susceptible to being overloaded. The timer:sleep/1
function now accepts an arbitrarily large integer.
Own Id: OTP-17481 Aux Id: PR-4811

	Add lists:enumerate/[1,2].
Own Id: OTP-17523 Aux Id: PR-4928

	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

	Support native time unit in calendar functions system_time_to_rfc3339/2
and rfc3339_to_system_time.
Own Id: OTP-17592 Aux Id: ERIERL-663, PR-5243

	The tagged tuple tests and fun-calls have been optimized and are now a little
bit cheaper than previously.
These optimizations become possible after making sure that all boxed terms
have at least one word allocated after the arity word. This has been
accomplished by letting all empty tuples refer to the same empty tuple literal
which also reduces memory usage for empty tuples.
Own Id: OTP-17608

	The signal queue benchmark in parallel_messages_SUITE and the ETS benchmark in
ets_SUITE have benchmark result visualization HTML pages with "fill-screen"
buttons to make the graphs bigger. This button did not work as intended
before. When pressing the button for a graph, the last graph got replaced with
a bigger version and not the one over the button. This is now fixed.
Own Id: OTP-17630

	The new module peer supersedes the slave module. The slave module is now
deprecated and will be removed in OTP 27.
peer contains an extended and more robust API for starting erlang nodes.
Own Id: OTP-17720 Aux Id: PR-5162

	This change introduces quote and unquote functions in uri_string module - a
replacement for deprecated encode and decode functions from http_uri.
Own Id: OTP-17778 Aux Id: GH-5368

	In order to make it easier for the user to manage multiple outstanding
asynchronous call requests, new functionality utilizing request identifier
collections have been introduced in
erpc,
gen_server,
gen_statem, and
gen_event.
Own Id: OTP-17784 Aux Id: PR-5792

	Update to the Unicode 14.0 specification.
Own Id: OTP-17869 Aux Id: PR-5595

	The following ets types have been renamed to a clearer name: tab/0 to
table/0 and comp_match_spec/0 to compiled_match_spec/0.
The types table_access/0 and table_type/0 have been exported.
Own Id: OTP-17901 Aux Id: GH-4968 PR-5649

	Add support for locating .asn1 files to the default search rules of
filelib:find_file/1 and filelib:find_source/1.
Own Id: OTP-17908 Aux Id: GH-5655 PR-5669

	Type specifications have been added to the gen_server, and the documentation
has been updated to utilize this.
This surfaced a few type violations that has been corrected in global,
logger_olp and rpc.
Own Id: OTP-17915 Aux Id: PR-5751, GH-2375, GH-2690

	The non-local function handler for the erl_eval can now be called with
either two or three arguments. When called with three arguments, the first
argument is the annotation for the node in the abstract format.
All errors during evaluation will now be passed through erlang:raise/3. If
the restricted shell is active and it does not let erlang:raise/3 through,
evaluation errors will be printed in less clear way. See the documentation for
restricted shell in shell.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17925 Aux Id: PR-5631

	Added filelib:ensure_path/1 that ensures that all directories for the given
path exists (unlike filelib:ensure_dir/1, which will not create the last
segment of the path).
Own Id: OTP-17953 Aux Id: PR-5621

	The functions groups_from_list/2 and groups_from_list/3 have been added to
the maps module.
Own Id: OTP-17969 Aux Id: PR-5588

	gen_server has been refactored to throw more readable exceptions when a
callback returns bad values in the Timeout field
(timeout() | 'hibernate' | {'continue,_}), and also to verify that argument
in the gen_server:enter_loop/3,4,5 API function.
Own Id: OTP-17974 Aux Id: GH-5683

	The functions uniq/1 and uniq/2 for removing duplicates have been added to
the lists module.
Own Id: OTP-17977 Aux Id: GH-5606, PR-5766

	Added support for configurable features as described in EEP-60. Features can
be enabled/disabled during compilation with options
(-enable-feature Feature, -disable-feature Feature and
+{feature, Feature, enable|disable}) to erlc as well as with directives
(-feature(Feature, enable|disable).) in the file. Similar options can be
used to erl for enabling/disabling features allowed at runtime. The new
maybe expression (EEP-49) is fully supported as the feature maybe_expr.
The features support is documented in the reference manual.
Own Id: OTP-17988

	The function filename:safe_relative_path/1, which has been deprecated since
OTP 25, has been removed. Use filelib:safe_relative_path/2 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17991

	A new PRNG have been added to the rand module: mwc59 which has been
developed in collaboration with Sebastiano Vigna. It is intended for
applications that need really fast pseudo-random numbers, and it comes with
two output value scramblers, one fast and one thorough.
Two internal functions for the exsp generator have also been exported so
they can be used outside the rand plug-in framework to shave off some
overhead.
The internal splitmix64 generator has also been exported which can be useful
for seeding other kinds of PRNG:s than its own.
Own Id: OTP-18011

 STDLIB 3.17.2.4

 Fixed Bugs and Malfunctions

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 3.17.2.3

 Improvements and New Features

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18556

 STDLIB 3.17.2.2

 Fixed Bugs and Malfunctions

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

 STDLIB 3.17.2.1

 Fixed Bugs and Malfunctions

	When changing callback module in gen_statem the state_enter calls flag from
the old module was used in for the first event in the new module, which could
confuse the new module and cause malfunction. This bug has been corrected.
With this change some sys debug message formats have been modified, which
can be a problem for debug code relying on the format.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18239

 STDLIB 3.17.2

 Fixed Bugs and Malfunctions

	The type specifications for shell_docs:get_doc/3,
shell_docs:get_callback_doc/3, and shell_docs:get_type_doc/3 incorrectly
stated that the returned Metadata was an empty map.
Own Id: OTP-18081

 STDLIB 3.17.1

 Fixed Bugs and Malfunctions

	The compilation time is no longer recorded in BEAM files. There remained
several undocumented functions that attempted to retrieve compilation times.
Those have now been removed.
Own Id: OTP-17962

 STDLIB 3.17

 Fixed Bugs and Malfunctions

	Fix rendering of nbsp on terminals that do not support unicode.
Own Id: OTP-17662 Aux Id: PR-5206

	Improved the erl_error printout for when re fails to compile a regular
expression to also print hints about why the compilation failed.
Own Id: OTP-17750 Aux Id: PR-5366

	Fixed spec for supervisor_bridge:start_link().
Own Id: OTP-17766 Aux Id: PR-5362

	Added missing shutdown clauses in supervisor which could cause erroneous
error reports.
Own Id: OTP-17767 Aux Id: PR-5344

 Improvements and New Features

	Add the no_auto_import_types to erl_lint to allow a module to define types
of the same name as a predefined type.
Own Id: OTP-17744 Aux Id: PR-5292

 STDLIB 3.16.1

 Fixed Bugs and Malfunctions

	Fixed a bug that could cause a child to become orphaned when a supervisor died
between unlinking and sending the shutdown signal to this child.
There was also a possibility for erratic supervisor reports caused by a race
between a supervisor shutting down a child and that child exiting by itself at
the same time.
Own Id: OTP-17649 Aux Id: GH-5193, PR-5201

 STDLIB 3.16

 Fixed Bugs and Malfunctions

	Fix io:format with ~p to no longer interpret floats as printable
characters.
Own Id: OTP-17424 Aux Id: GH-4801 PR-4803

	Fix specs for base64 encode/decode functions to also include 0.
Own Id: OTP-17429 Aux Id: GH-4761

	The failing call io:format("~p\n") would result in a warning for line number
0 instead of the correct line and column numbers. This has been corrected, and
all warnings for failing calls to io:format() has been
rephrased to make it clearer exactly what the problem is.
Own Id: OTP-17430

	When the options warn_missing_spec and export_all were given, there would
only be warnings for missing specs for functions that had been explicitly
exported using an -export attribute.
Own Id: OTP-17434 Aux Id: GH-4772

	Calling c:ls/1 with an atom whose contents is the the name of a file (as
opposed to a directory) would crash.
Own Id: OTP-17463 Aux Id: GH-4916

	The MODULE and MODULE_STRING macros would always appear to be defined
(when tested by -ifdef), even though no -module() declaration had been
seen yet. Changed so that -ifdef ?MODULE. will not consider ?MODULE defined
if -module() has not been previously seen.
Own Id: OTP-17505 Aux Id: GH-4995

	Fix bug with rendering of missing types and callbacks in shell_docs.
Own Id: OTP-17573 Aux Id: ERL-1264 GH-4270

	When the deterministic option was given to the compiler, the ?FILE macro
would be expanded to full path of the source file before the first include
directive and to base part of the filename after include directive.
Own Id: OTP-17581 Aux Id: PR-5141

	Fixed broken win32reg:delete_key and fixed win32reg:value for default
value.
Own Id: OTP-17622 Aux Id: PR-5038

	Fixed error information for the call maps:get(some_key, #{}).
Own Id: OTP-17634 Aux Id: GH-5196

 Improvements and New Features

	Most output functions in the io module now print extra error information
when provided with invalid arguments. The functions are: io:format,
io:fwrite, io:put_chars, io:nl and io:write.
Own Id: OTP-17317 Aux Id: PR-4757

	EEP-54 (Provide more information about errors) now includes two new return
values for the format_error callback, general and reason.
Multi-line error descriptions returned from a format_error callback are now
correctly indented.
The documentation for erl_error, error/3 and
Errors and Error Handling in the Erlang Reference
Manual have been extended.
Own Id: OTP-17454 Aux Id: PR-4764

	In the documentation for the lists module, it has been clarified that
predicate funs must return a boolean.
Own Id: OTP-17503 Aux Id: GH-4985

	The documentation for c:c/1, c:c/2, and c:c/3 has been clarified.
Own Id: OTP-17571 Aux Id: GH-5103

 STDLIB 3.15.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.15.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.15

 Fixed Bugs and Malfunctions

	Time-outs in gen_statem with relative time 0 did not behave quite
according to the intended model. This has now been corrected.
The correction introduces a small potential incompatibility e.g when combining
a state time-out with inserted events, and the inserted event does a state
change in the state with the time-out. Before this correction the state
time-out could be delivered even after the second state change, but now it is
guaranteed that a state time-out is only delivered in the state it was started
for, even in this corner case.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15107 Aux Id: ERL-1381, PR-2813

	Fix bugs in erl_eval concerning bitstring comprehensions.
Own Id: OTP-16865

	File names that start with a dot (such as ".gitignore" are now treated as
file names and not extensions by filename:extension/1 and
filename:rootname/1.
Own Id: OTP-16905

	Fixed a bug where beam_lib:chunks/3 with the allow_missing_chunks option
would crash if a named chunk was missing.
Own Id: OTP-16950 Aux Id: ERL-1378

	A floating point zero (0.0) can be both positive (+0.0) and negative (-0.0).
Multiple bugs in the compiler, runtime system, and STDLIB have been fixed to
ensure that the minus sign on 0.0 is not lost.
Own Id: OTP-17077 Aux Id: ERL-1431, PR-2903, PR-2905, PR-2906

	Eliminated a Dialyzer crashed when the -MMD option is used to generate a
dependency file and a BEAM file a the same time.
Own Id: OTP-17118 Aux Id: PR-2825

	Fixed bug in shell_docs and erl_docgen that interpreted em tags as
strong.
Own Id: OTP-17122

	On Solaris, the math:acos/1 and math:asin/1 functions would not fail for
arguments outside the valid domain.
Own Id: OTP-17133

	Silence unused_record warnings when using ms_transform. The parse
transform ms_transform replaces records with tuples, which can cause the
Erlang code linter to emit warnings about unused records.
Own Id: OTP-17186

	Documented a deficiency in the re module regarding the [:ascii:] character
class matching Latin-1 characters.
Own Id: OTP-17222 Aux Id: GH-4544

	Fixed spec of start functions in generic behaviors.
Own Id: OTP-17342 Aux Id: GH-4725 PR-4726

	Supervisors rejected child specs with a shutdown value of 0.
Own Id: OTP-17364 Aux Id: PR-4747

 Improvements and New Features

	In the rand module it is now possible to seed the default algorithm using an
algorithm alias: default.
Generating pseudo random binaries has been implemented with rand:bytes/1 and
rand:bytes_s/2.
Own Id: OTP-14646 Aux Id: PR-2920

	New functions have been added to the proplists module: to_map/1,2 and
from_map/1.
Own Id: OTP-14647 Aux Id: PR-2910

	New functions have been added to the queue module: all/2, any/2,
delete/2, delete_r/2, delete_with/2, and delete_with_r/2.
Own Id: OTP-14650 Aux Id: PR-2850

	New function have been added to the queue module: fold/2 and
filtermap/2.
Own Id: OTP-14793 Aux Id: PR-2791

	Support for handling abstract code created before OTP R15 has been dropped.
Own Id: OTP-16678 Aux Id: PR-2627

	Extended error information for failing BIF calls as proposed in
EEP 54 has been
implemented.
When a BIF call from the Erlang shell fails, more information about which
argument or arguments that were in error will be printed. The same extended
error information will by proc_lib, common_test, and qlc when BIF calls
fail.
For applications that wish to provide the same extended error information,
there are new functions erl_error:format_exception/3 and
erl_error:format_exception/4.
There is a new error/3 BIF that allows applications or
libraries to provide extended error information in the same way for their own
exceptions.
Own Id: OTP-16686

	The process alias feature
as outlined by
EEP 53 has been
introduced. It is introduced in order to provide a lightweight mechanism that
can prevent late replies after timeout or connection loss. For more
information, see EEP 53 and the documentation of the new
alias/1 BIF and the new options to the
monitor/3 BIF.
The call operation in the framework used by gen_server, gen_statem, and
gen_event has been updated to utilize alias in order to prevent late
responses. The gen_statem behavior still use a proxy process in the
distributed case, since it has always prevented late replies and aliases wont
work against pre OTP 24 nodes. The proxy process can be removed in OTP 26.
The alias feature also made it possible to introduce new functions similar to
the erpc:receive_response() function in the gen
behaviors, so the new functions
gen_server:receive_response(),
gen_statem:receive_response(),
gen_event:receive_response() have also
been introduced.
Own Id: OTP-16718 Aux Id: PR-2735

	Improved documentation about exit signals emitted when a gen_server
terminates.
Own Id: OTP-16910 Aux Id: PR-2771

	New functions have been added to the maps module: merge_with/3,
intersect/2, intersect_with/3, filtermap/2, from_keys/2, and
maps:foreach/2.
maps:merge_with/3 is the same as merge/2 but takes an extra fun that is
used to combine items with the same key.
maps:intersect/2 computes the intersection of two maps.
maps:intersect_with/3 is the same as intersect/2 but takes an extra fun
that is used to combine intersecting items.
maps:filtermap/2 allows filtering and mapping of a map in a single pass.
maps:from_keys/2 constructs a map from a list of keys and a single value and
can be used to to optimize sets operations such as from_list/1, filter/2,
intersection/2, and subtract/2.
maps:foreach/2 allows iteration over a map without returning any value.
Own Id: OTP-16936 Aux Id: ERL-1367

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	The filename:src/1 function which was deprecated in OTP 20 has been removed.
Use filelib:find_source/1,3 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16971

	The pretty printer for floating point number have been changed to make it
easier to see if the integer part of the number has been rounded. After the
change the digit that may have been rounded always appears last or just before
the exponent character (e or E). This is accomplished by always printing the
number using scientific notation if it is so large that the integer part could
be rounded.
Own Id: OTP-16980 Aux Id: ERL-1308

	Accept references up to a size of 160-bits from remote nodes. This is the
first step in an upgrade path toward using references up to 160-bits in a
future OTP release.
Own Id: OTP-17005 Aux Id: OTP-16718

	Add option location to erl_parse:abstract/2.
Own Id: OTP-17024

	All long running functions in the maps API are now yielding. In previous
releases the functions maps:from_list/1, maps:keys/1 and maps:values/1
did not yield. This could cause unfair scheduling of processes.
Own Id: OTP-17057

	The sets module now has an optional map-based implementation, as described
in EEP 50.
To use this implementation, pass the {version,2} option to sets:new/1 or
sets:from_list/2.
Own Id: OTP-17059 Aux Id: PR-2864

	Added shell_docs:supported_tags/0. This function can be used to retrieve the
tags currently supported by shell_docs.
Own Id: OTP-17120

	The application/erlang+html documentation storage format used by
shell_docs has been updated to include the tags b, strong, h4, h5
and h6.
Own Id: OTP-17121

	Do not pretty-print catch expressions with unnecessary parentheses. The
re-write of the Erlang parser grammar in PR-2584 implies that parentheses
around catch expressions are in many cases no longer required.
Own Id: OTP-17169 Aux Id: PR-2584

	Improved explanation of {continue,Continue} in Module:init/1 of the
gen_server documentation.
Own Id: OTP-17171 Aux Id: PR-3011

	The erl_eval module now accepts a map for keeping track of bindings. Using
an orddict for bindings will still work.
Own Id: OTP-17175

	Documented epp:scan_erl_form/1 and added epp:scan_file/2.
Own Id: OTP-17199 Aux Id: PR-2658

	The standard floating point printing algorithm used by the io and io_lib
modules has been changed from the algorithm described in [1] to the Ryu
algorithm [2]. This gives a significant speed improvement for the printing of
most floating point numbers and a small memory consumption improvement.
[1]: Robert G. Burger and R. Kent Dybvig. 1996. Printing floating-point
numbers quickly and accurately. In Proceedings of the ACM SIGPLAN 1996
conference on Programming language design and implementation (PLDI '96).
Association for Computing Machinery, New York, NY, USA, 108–116.
DOI:https://doi.org/10.1145/231379.231397
[2]: Ulf Adams. 2018. Ryū: fast float-to-string conversion. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2018). Association for Computing Machinery, New York, NY,
USA, 270–282. DOI:https://doi.org/10.1145/3192366.3192369
Thanks to Thomas Depierre
Own Id: OTP-17210

	Add hex encoding and decoding functions in the binary module.
Own Id: OTP-17236 Aux Id: PR-3014

	The undocumented and partially broken ets:filter/3 function has been
removed.
Own Id: OTP-17263

	Add support in shell_docs to display any "text" documentation format.
This means that h(Module) in the shell now can display the "text/markdown"
of Elixir documentation.
Own Id: OTP-17267

	The internal hashing of keys within ETS tables of types set, bag,
duplicate_bag has been salted to diverge from erlang:phash2. This to avoid
bad hashing if phash2 is used to distribute the keys over separate
tables/nodes.
Own Id: OTP-17276 Aux Id: PR-2979

	Updated to the Unicode 13.0 specification.
Own Id: OTP-17327 Aux Id: PR-4707

	Add compiler option {nowarn_unused_record, RecordNames}. Document compiler
option nowarn_unused_type.
Own Id: OTP-17330

	Implementation of
EEP 56 in
supervisor. It adds the concept of significant children as well as the
auto_shutdown supervisor flag.
See the supervisor manual page for more information.
Own Id: OTP-17334 Aux Id: PR-4638, EEP-56

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

 STDLIB 3.14.2.3

 Fixed Bugs and Malfunctions

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

 STDLIB 3.14.2.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.14.2.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.14.2

 Fixed Bugs and Malfunctions

	Dictionaries that have become zipped by the zip module did not get executable
permission (for the file owner) which makes the files inside the dictionary
inaccessible. This is fixed by giving dictionaries inside a zip archive XRW
permission.
Own Id: OTP-17295 Aux Id: GH-4687

 STDLIB 3.14.1

 Fixed Bugs and Malfunctions

	Handle maps in erl_parse:tokens().
Own Id: OTP-16978

	The erlang shell function rr has been fixed to be able to read records from
files within a code archive.
Own Id: OTP-17182 Aux Id: PR-3002

	If beam_lib is asked to return abstract code for a BEAM file produced by
Elixir and Elixir is not installed on the computer, beam_lib will no longer
crash, but will return an error tuple. The cover:compile_beam() and
cover:compile_beam_directory() functions have been updated to also return an
error tuple in that situation.
Own Id: OTP-17194 Aux Id: GH-4353

	Correct example module erl_id_trans regarding the {char, C} type.
Own Id: OTP-17273

 STDLIB 3.14

 Fixed Bugs and Malfunctions

	This change fixes the handling of deep lists in the path component when using
uri_string:recompose/1.
Own Id: OTP-16941

	Fix shell_docs to clear shell decorations (bold/underline) when paginating
output.
Fix various small renderings issues when integrating shell_docs with edoc.
Own Id: OTP-17047

 Improvements and New Features

	Improved the API and documentation of the uri_string module.
Added a new chapter to the Users Guide about Uniform Resource Identifiers and
their handling with the new API.
Added two new API functions: uri_string:allowed_characters/0 and
uri_string:percent_decode/1.
This change has been marked as potentially incompatible as
uristring:normalize/2 used to decode percent-encoded character triplets that
corresponded to characters not in the reserved set. After this change,
uri_string:normalize/2 will only decode those percent-encoded triplets that
correspond to characters in the unreserved set (ALPHA / DIGIT / "-" / "." /
"" / "~").
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16460

	The shell_docs module has been expanded with the possibility to configure
unicode, ansi and column size for the rendered text.
Own Id: OTP-16990

 STDLIB 3.13.2

 Fixed Bugs and Malfunctions

	The functions digraph:in_edges/2 and digraph:out_edges/2 would return
false edges if called for a vertex that had a '_' atom in its name term.
Own Id: OTP-16655

	filelib:wildcard("not-a-directory/..") should return an empty list. On
Windows it returned "not-a-directory/..".
Own Id: OTP-16700

	Fix the typespec of shell_docs:render to use the correct type for an MFA.
Own Id: OTP-16739

	Fix uri_string:recompose/1 when host is present but input path is not
absolute.
This change prevents the recompose operation to change the top level domain of
the host when the path does not start with a slash.
Own Id: OTP-16751 Aux Id: ERL-1283

	The epp module would return a badly formed error term when an 'if'
preprocessor directive referenced an undefined symbol. epp:format_error/1
would crash when called with the bad error term.
Own Id: OTP-16816 Aux Id: ERL-1310

	lists:sublist(List, Start, Len) failed with an exception if
Start > length(List) + 1 even though it is explicitly documented that "It is
not an error for Start+Len to exceed the length of the list".
Own Id: OTP-16830 Aux Id: ERL-1334, PR-2718

 STDLIB 3.13.1

 Fixed Bugs and Malfunctions

	When a temporary child of a simple_one_for_one supervisor died, the internal
state of the supervisor would be corrupted in a way that would cause the
supervisor to retain the start arguments for subsequent children started by
the supervisor, causing unnecessary growth of the supervisor's heap. There
state corruption could potentially cause other problems as well.
Own Id: OTP-16804

 STDLIB 3.13

 Fixed Bugs and Malfunctions

	Compiling a match specification with excessive nesting caused the runtime
system to crash due to scheduler stack exhaustion. Instead of crashing the
runtime system, effected functions will now raise a system_limit error
exception in this situation.
Own Id: OTP-16431 Aux Id: ERL-592

	Initialization of record fields using _ is no longer allowed if the number
of affected fields is zero.
Own Id: OTP-16516

	Fix bugs in eval_bits.
Own Id: OTP-16545

 Improvements and New Features

	Improved the printout of single line logger events for most of the OTP
behaviours in STDLIB and Kernel. This includes proc_lib, gen_server,
gen_event, gen_statem, gen_fsm, supervisor, supervisor_bridge and
application.
Improved the chars_limit and
depth handling in proc_lib and when
formatting of exceptions.
Own Id: OTP-15299

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Improved ETS scalability of concurrent calls that change the size of a table,
like ets:insert/2 and ets:delete/2.
This performance feature was implemented for ordered_set in OTP 22.0 and
does now apply for all ETS table types.
The improved scalability may come at the cost of longer latency of
ets:info(T,size) and ets:info(T,memory). A new table option
decentralized_counters has therefore been added. It is default true for
ordered_set with write_concurrency enabled and default false for all
other table types.
Own Id: OTP-15744 Aux Id: OTP-15623, PR-2229

	Handle Unicode filenames in the zip module.
Own Id: OTP-16005 Aux Id: ERL-1003, ERL-1150

	Unicode support was updated to the Unicode 12.1 standard.
Own Id: OTP-16073 Aux Id: PR-2339

	All of the modules proc_lib,
gen_server,
gen_statem, and
gen_event have been extended with a
start_monitor() function. For more information, see the documentation of
start_monitor() for these modules.
Own Id: OTP-16120 Aux Id: ERIERL-402, PR-2427

	Updates for new erlang:term_to_iovec() BIF.
Own Id: OTP-16128 Aux Id: OTP-15618

	Documented a quirk regarding extraction from file descriptors in erl_tar.
Own Id: OTP-16171 Aux Id: ERL-1057

	Added ok as return value to gen_server:reply/2
Own Id: OTP-16210 Aux Id: PR-2411

	New functions have been added to c for printing embedded documentation for
Erlang modules. The functions are:
	h/1,2,3 - Print the documentation for a Module:Function/Arity.

	ht/1,2,3 - Print the type documentation for a Module:Type/Arity.

The embedded documentation is created when building the Erlang/OTP
documentation.
Own Id: OTP-16222

	Add indent and linewidth to the options of the erl_pp module's
functions.
Own Id: OTP-16276 Aux Id: PR-2443

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

	The compiler will now raise a warning when inlining is used in modules that
load NIFs.
Own Id: OTP-16429 Aux Id: ERL-303

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Extend erl_parse:abstract/1,2 to handle external fun expressions
(fun M:F/A).
Own Id: OTP-16480

	Added filelib:safe_relative_path/2 to replace
filename:safe_relative_path/1, which did not safely handle symbolic links.
filename:safe_relative_path/1 has been deprecated.
Own Id: OTP-16483 Aux Id: PR-2542

	The module shell_docs has been added. The module contains functions for
rendering, validating and normalizing embedded documentation.
Own Id: OTP-16500

	Module and function auto-completion in the shell now looks at all available
modules instead of only those loaded. A module is considered available if it
either is loaded already or would be loaded if called.
The auto-completion has also been expanded to work in the new h/1,2,3
function in c.
Own Id: OTP-16501 Aux Id: OTP-16494, OTP-16222, OTP-16406, OTP-16499,
OTP-16500, PR-2545, ERL-708

	Updated the internal pcre library to 8.44.
Own Id: OTP-16557

 STDLIB 3.12.1.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.12.1.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.12.1

 Fixed Bugs and Malfunctions

	[re:run(Subject, RE, [unicode])](re:run/3) returned nomatch instead of
failing with a badarg error exception when Subject contained illegal utf8
and RE was passed as a binary. This has been corrected along with
corrections of reduction counting in re:run() error cases.
Own Id: OTP-16553

 STDLIB 3.12

 Fixed Bugs and Malfunctions

	Fix type specification for uri_string:normalize/2 that may also return
error().
Own Id: OTP-16322

	Improve error handling in uri_string:normalize/2. This change fixes a crash
when the input URI has faulty percent-encoding.
Own Id: OTP-16351

	Fix minor bugs in the Erlang pretty printer (erl_pp).
Own Id: OTP-16435

	Fix the Erlang parser regarding consecutive unary operators.
Own Id: OTP-16439

	Let calendar:rfc3339_to_system_time() crash when the time offset is missing.
Own Id: OTP-16514 Aux Id: ERL-1182

 Improvements and New Features

	Implement uri_string:resolve/{2,3} that can be used to resolve a URI
reference against a base URI.
Own Id: OTP-16321

	In gen_statem it is now possible to change the callback module for a running
server. See gen_statem's documentation for change_callback_module,
push_callback_module, and pop_callback_module.
Own Id: OTP-16477 Aux Id: PR-2531

 STDLIB 3.11.2

 Fixed Bugs and Malfunctions

	A directory traversal vulnerability has been eliminated in erl_tar. erl_tar
will now refuse to extract symlinks that points outside the targeted
extraction directory and will return {error,{Path,unsafe_symlink}}. (Thanks
to Eric Meadows-Jönsson for the bug report and for suggesting a fix.)
Own Id: OTP-16441

 STDLIB 3.11.1

 Fixed Bugs and Malfunctions

	The ets:update_counter/4 core dumped when given an ordered_set with
write_concurrency enabled and an invalid position. This bug has been fixed.
Own Id: OTP-16378 Aux Id: ERL-1125

 STDLIB 3.11

 Fixed Bugs and Malfunctions

	The functions unicode:characters_to_list()
and unicode:characters_to_binary()
raised a badarg exception instead of returning an error tuple when passed
very large invalid code points as input.
Own Id: OTP-16052

	Fixed a bug in the linter where list and binary comprehensions could suppress
unsafe variable errors.
Own Id: OTP-16053 Aux Id: ERL-1039

	Fixed incorrect type specifications for erl_tar:open/2, create/2,3, and
add/4.
Own Id: OTP-16085 Aux Id: PR-2379

	Fixed erroneous type spec for binary:list_to_bin/1. Argument type was
changed from iodata/0 to iolist/0.
Own Id: OTP-16132 Aux Id: ERL-1041

	Fix a race in pool:pspawn_link that caused a noproc error to be thrown
when using it to spawn a very short lived process.
Own Id: OTP-16211

	Fixed a performance issue in ETS lookup when using the compressed option and
the term contained atoms. Before this fix the decompress algorithm for atoms
would unnecessarily take a global lock to validate the atom.
Own Id: OTP-16316

 Improvements and New Features

	Added a new compiler/linter option to disable warnings for unused types
(nowarn_unused_type).
Own Id: OTP-16262 Aux Id: ERIERL-435

	ETS tables have been optimized to not use any locks when running in a system
with only one scheduler enabled. This can provide significant performance
gains for applications that use ETS tables heavily.
Own Id: OTP-16315

 STDLIB 3.10

 Fixed Bugs and Malfunctions

	re:run() now yields when validating utf8 in a large subject.
Own Id: OTP-15836 Aux Id: ERL-876

	Upgraded the ERTS internal PCRE library from version 8.42 to version 8.43. See
http://pcre.org/original/changelog.txt
for information about changes made to PCRE. This library implements major
parts of the re regular expressions module.
Own Id: OTP-15889

	The bug with ID ERL-717 has been fixed. The functions io:columns() and
io:rows() only worked correctly inside interactive erlang shells before this
fix. These functions returned {error,enotsup} before this fix even if stdout
and stdin were connected to a terminal when they were invoked from an escript
or a program started with e.g., erl -noshell.
Own Id: OTP-15959 Aux Id: ERL-717

	Fixed handling of ".." and "@" in wildcards. ".." would only work when
preceded by a literal pattern such as in "a/..", not when preceded by wildcard
characters such as in "*/..". The combination "@/.." was also broken, and in
addition "@" in a pattern could degrade performance of the wildcard matching.
Own Id: OTP-15987 Aux Id: ERL-1029

	Make sure ets:fun2ms() can handle ++/2 in the head of functions when
called from the shell.
Own Id: OTP-15992 Aux Id: PR-2322

 Improvements and New Features

	Debugging of time-outs in gen_statem has been improved. Starting a time-out
is now logged in sys:log and sys:trace. Running time-outs are visible in
server crash logs, and with sys:get_status. Due to this system events
{start_timer, Action, State} and {insert_timout, Event, State} have been
added, which may surprise tools that rely on the format of these events.
New features: The EventContent of a running time-out can be updated with
{TimeoutType, update, NewEventContent}. Running time-outs can be cancelled
with {TimeoutType, cancel} which is more readable than using
Time = infinity.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15510

	re:run() now avoids validating utf8 in the subject more than once in the
same call. This validation could previously be performed multiple times when
the global option was passed.
Own Id: OTP-15831 Aux Id: ERL-876

	ETS ordered_set tables with write_concurrency enabled has got a
performance issue fixed. There were no limits for the values of internal
statistics counters before this fix. This could result in that the data
structure sometimes reacted slowly to a change in how many parallel processes
were using it.
Own Id: OTP-15906

	The ordsets:union/1 is now faster when passed a long list of ordsets.
Own Id: OTP-15927

	unicode:characters_to_binary() could return very small binaries as reference
counted off heap binaries. This could cause an unnecessary large memory usage
and an unnecessary load on the binary allocator. Small binaries are now always
returned as heap binaries.
Own Id: OTP-16002 Aux Id: ERIERL-366

	Display a more meaningful error message when a bad I/O server is used in a
script written in Erlang (escript).
Own Id: OTP-16006 Aux Id: ERL-992

	New feature ets:info(_, binary) to get information about all reference
counted binaries kept by a table. This is the same kind of debug information
that process_info(_, binary) returns for a process.
Own Id: OTP-16035 Aux Id: ERIERL-366

	Corrected ETS documentation about the behavior of compiled match
specifications when serialized through external format.
Own Id: OTP-16038 Aux Id: PR-2366

 STDLIB 3.9.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-15875 Aux Id: ERL-967

 STDLIB 3.9.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a failure when formatting binaries using the
control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15847 Aux Id: ERL-957

 STDLIB 3.9

 Fixed Bugs and Malfunctions

	Fix a bug in string:lexemes/2.
The bug was found when optimizing the handling of deep lists of Unicode
characters in the string module.
Own Id: OTP-15649

	A bug has been fixed in the maps implementation that could cause a crash or
memory usage to grow until the machine ran out of memory. This could happen
when inserting a new key-value pair with a key K1 containing a binary B1
into a map M having a key K2 with a binary B2 if the following
conditions were met:
	B1 =/= B2
	size(B1) >= 4294967296
	size(B2) >= 4294967296
	size(M) >= 32
	(size(B1) rem 4294967296) == (size(B2) rem 4294967296)
	the first (size(B1) rem 4294967296) bytes are the same both in B1 and
B2
	substituting B1 in K1 with B2 would create a term with the same value
as K2

The root cause of the problem is that the maps implementation only hashed
the first (X rem 4294967296) bytes of binaries so that different binaries
could get the same hash value independently of the hash seed.
Own Id: OTP-15707

	Since the introduction of the stack trace variable, the Erlang Pretty Printer
has left out the exception class throw even when the stack trace variable
cannot be left out, which is not correct Erlang code. The fix is to always
include the exception class throw.
Own Id: OTP-15751

	record_info/2 is a pseudo-function that requires literal arguments known at
compile time. Therefore, the following usage is illegal: fun record/info/2.
The compiler would crash when during compilation of that kind of code.
Corrected to issue a compilation error.
Own Id: OTP-15760 Aux Id: ERL-907

 Improvements and New Features

	A new rand module algorithm, exro928ss (Xoroshiro928**), has been
implemented. It has got a really long period and good statistical quality for
all output bits, while still being only about 50% slower than the default
algorithm.
The same generator is also used as a long period counter in a new crypto
plugin for the rand module, algorithm crypto_aes. This plugin uses AES-256
to scramble the counter which buries any detectable statistical artifacts.
Scrambling is done in chunks which are cached to get good amortized speed
(about half of the default algorithm).
Own Id: OTP-14461 Aux Id: PR-1857

	Types related to server naming and starting have been exported from
gen_statem. These are: server_name/0, server_ref/0, start_opt/0,
start_ret/0 and enter_loop_opt/0.
Own Id: OTP-14724 Aux Id: PR-2056

	The default algorithm for the rand module has been changed to exsss
(Xorshift116**) which is a combination of the Xorshift116 (exsp) state
update and a new scrambler "StarStar" from the 2018 paper "Scrambled Linear
Pseudorandom Number Generators" by David Blackman and Sebastiano Vigna. This
combination should not have the caveat of weak low bits that the previous
default algorithm(s) have had, with the cost of about 10% lower speed. See
GitHub pull request #1969.
Own Id: OTP-14731 Aux Id: PR-1969

	The generic state machine behaviour gen_statem has gotten code cleanup and
documentation improvements from GitHub Pull Request #1855, even though the PR
itself was rejected.
Own Id: OTP-14737 Aux Id: PR-1855

	Update Unicode specification to version 11.0.
Own Id: OTP-15111

	ETS option write_concurrency now also affects and improves the scalability
of ordered_set tables. The implementation is based on a data structure
called contention adapting search tree, where the lock granularity adapts to
the actual amount of concurrency exploited by the applications in runtime.
Own Id: OTP-15128

	Optimized maps:new/0 with trivial Erlang implementation, making use of
literal terms (the empty map) not needing dynamic heap allocation.
Own Id: OTP-15200 Aux Id: PR-1878

	The gen_* behaviours have been changed so that if logging of the last N
messages through sys:log/2,3 is active for the server, this log is included
in the terminate report.
To accomplish this the format of "System Events" as defined in the man page
for sys has been clarified and cleaned up, a new function sys:get_log/1
has been added, and sys:get_debug/3 has been deprecated. Due to these
changes, code that relies on the internal badly documented format of "System
Events", need to be corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15381

	The gen_statem behaviour engine loop has been optimized for better
performance in particular when the callback module returns some actions, that
is better performance for more realistic applications than the Echo Benchmark.
Own Id: OTP-15452

	Do not allow function specifications for functions residing in other modules.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15563 Aux Id: ERL-845, OTP-15562

	The persistent_term functions put/2 and erase/1
are now yielding.
Own Id: OTP-15615

	Previously, all ETS tables used centralized counter variables to keep track of
the number of items stored and the amount of memory consumed. These counters
can cause scalability problems (especially on big NUMA systems). This change
adds an implementation of a decentralized counter and modifies the
implementation of ETS so that ETS tables of type ordered_set with
write_concurrency enabled use the decentralized counter. Experiments
indicate that this change substantially improves the scalability of ETS
ordered_set tables with write_concurrency enabled in scenarios with
frequent ets:insert/2 and ets:delete/2 calls.
Own Id: OTP-15623 Aux Id: PR-2190

	Use ssh instead of rsh as the default remote shell.
Own Id: OTP-15633 Aux Id: PR-1787

	Added beam_lib:strip/2 and friends, which accept a list of chunks that
should be preserved when stripping.
Own Id: OTP-15680 Aux Id: PR-2114

	Optimize printing of maps with io_lib:write(). Also optimize pretty printing
of strings (~s and ~ts) when limiting the output with the chars_limit
option.
Own Id: OTP-15705

	There are new compiler options nowarn_removed and {nowarn_removed,Items}
to suppress warnings for functions and modules that have been removed from
OTP.
Own Id: OTP-15749 Aux Id: ERL-904

	Let the Erlang Pretty Printer put atomic parts on the same line.
Own Id: OTP-15755

	Add option quote_singleton_atom_types to the Erlang Pretty Printer's
functions. Setting the option to true adds quotes to all singleton atom
types.
Own Id: OTP-15756

 STDLIB 3.8.2.4

 Fixed Bugs and Malfunctions

	[re:run(Subject, RE, [unicode])](re:run/3) returned nomatch instead of
failing with a badarg error exception when Subject contained illegal utf8
and RE was passed as a binary. This has been corrected along with
corrections of reduction counting in re:run() error cases.
Own Id: OTP-16553

 STDLIB 3.8.2.3

 Fixed Bugs and Malfunctions

	A directory traversal vulnerability has been eliminated in erl_tar. erl_tar
will now refuse to extract symlinks that points outside the targeted
extraction directory and will return {error,{Path,unsafe_symlink}}. (Thanks
to Eric Meadows-Jönsson for the bug report and for suggesting a fix.)
Own Id: OTP-16441

 STDLIB 3.8.2.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-15875 Aux Id: ERL-967

 STDLIB 3.8.2.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a failure when formatting binaries using the
control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15847 Aux Id: ERL-957

 STDLIB 3.8.2

 Fixed Bugs and Malfunctions

	A bug in gen_statem has been fixed where the internal timeout message could
arrive as an info to the callback module during high load due to incorrect use
of asynchronous timer cancel.
Own Id: OTP-15295

 STDLIB 3.8.1

 Fixed Bugs and Malfunctions

	Fixed a performance regression when reading files opened with the compressed
flag.
Own Id: OTP-15706 Aux Id: ERIERL-336

 STDLIB 3.8

 Fixed Bugs and Malfunctions

	Fix a bug in the Erlang Pretty Printer: long atom names in combination with
<<>> could cause a crash.
Own Id: OTP-15592 Aux Id: ERL-818

	Fix bugs that could cause wrong results or bad performance when formatting
lists of characters using the control sequences p or P and limiting the
output with the option chars_limit.
Own Id: OTP-15639

 Improvements and New Features

	Improved ETS documentation about safe table traversal and the partially bound
key optimization for ordered_set.
Own Id: OTP-15545 Aux Id: PR-2103, PR-2139

	Optimize calendar:gregorian_days_to_date/1.
Own Id: OTP-15572 Aux Id: PR-2121

	Optimize functions calendar:rfc3339_to_system_time() and
calendar:system_time_to_rfc3339().
Own Id: OTP-15630

 STDLIB 3.7.1

 Fixed Bugs and Malfunctions

	Optimize pretty printing of terms. The slower behaviour was introduced in
Erlang/OTP 20.
Own Id: OTP-15573 Aux Id: ERIERL-306

 STDLIB 3.7

 Fixed Bugs and Malfunctions

	Document bit_size in match specifications and allow it in ets:fun2ms.
Own Id: OTP-15343 Aux Id: PR-1962

	The beam() type in beam_lib is defined as
module() | file:filename() | binary(). The module/0 is misleading.
Giving the module name as an atom will only work if the BEAM file is in a
current directory.
To avoid confusion, module/0 has been removed from the type. That means
that there will be a Dialyzer warning for code that call beam_lib with an
atom as filename, but the calls will still work.
Own Id: OTP-15378 Aux Id: ERL-696

	unicode_util crashed on certain emoji grapheme clusters in binary strings.
Own Id: OTP-15428 Aux Id: ERL-777

	When an external fun was used, warnings for unused variables could be
suppressed.
Own Id: OTP-15437 Aux Id: ERL-762

	Fix reduction count in lists:member/2
Own Id: OTP-15474 Aux Id: ERIERL-229

 Improvements and New Features

	When specified, the +{source,Name} option will now override the actual file
name in stack traces, instead of only affecting the return value of
Mod:module_info().
The +deterministic flag will also affect stack traces now, omitting all path
information except the file name, fixing a long-standing issue where
deterministic builds required deterministic paths.
Own Id: OTP-15245 Aux Id: ERL-706

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

	calendar:system_time_to_rfc3339/1,2 no longer remove trailing zeros from
fractions.
Own Id: OTP-15464

 STDLIB 3.6

 Fixed Bugs and Malfunctions

	The specs of filename:basedir/2,3 are corrected.
Own Id: OTP-15252 Aux Id: ERL-667

 Improvements and New Features

	Let dets:open_file() exit with a badarg message if given a raw file name
(a binary).
Own Id: OTP-15253 Aux Id: OTP-13229, ERL-55

	The Format argument of the formatting functions in modules io and io_lib
is accepted even if it is, for example, a list of binaries. This is how it
used to be before Erlang/OTP 21.0.
Own Id: OTP-15304

 STDLIB 3.5.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting a list of non-characters
using the control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15159

 STDLIB 3.5

 Fixed Bugs and Malfunctions

	gen_statem improvements.
When using an exception that is valid but not allowed in a state enter call,
the reason has been changed from {bad_action_from_state_function,Action} to
{bad_state_enter_action_from_state_function,Action}.
Timer parsing has been improved. Many erroneous timeout tuples was not handled
correctly.
The documentation has been updated, in particular the User's Guide and the
pointer to it from the Reference Manual is much more obvious.
Own Id: OTP-14015

	The type specifications for file:posix/0 and
inet:posix/0 have been updated according to which errors
file and socket operations should be able to return.
Own Id: OTP-14019 Aux Id: ERL-550

	File operations used to accept filenames containing
null characters (integer value zero). This caused the name to be truncated and
in some cases arguments to primitive operations to be mixed up. Filenames
containing null characters inside the filename are now rejected and will
cause primitive file operations to fail.
Also environment variable operations used to accept
names and values of
environment variables containing null characters (integer value zero). This
caused operations to silently produce erroneous results. Environment variable
names and values containing null characters inside the name or value are now
rejected and will cause environment variable operations to fail.
Primitive environment variable operations also used to accept the $=
character in environment variable names causing various problems. $=
characters in environment variable names are now also rejected.
Also os:cmd/1 now reject null characters inside its
command.
erlang:open_port/2 will also reject null characters inside the port name
from now on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14543 Aux Id: ERL-370

	Make io_lib:unscan_format/1 work with pad char and default precision.
Own Id: OTP-14958 Aux Id: PR-1735

	The control sequence modifiers t and l can be used together in the same
control sequence which makes it possible to have Unicode atoms and no
detection of printable character lists at the same time.
Own Id: OTP-14971 Aux Id: PR-1743

	Fix a bug in the Erlang code linter: the check of guard expressions no longer
returns false if the map syntax is used. The bug affected the Erlang shell,
the Debugger, and other modules evaluating abstract code.
Own Id: OTP-15035 Aux Id: ERL-613

	A sys debug fun of type {Fun,State} should not be possible to install twice.
This was, however, possible if the current State was 'undefined', which was
mistaken for non-existing fun. This has been corrected.
Own Id: OTP-15049

	Fix io:putchars/2 stacktrace rewriting at errors to point to a valid
function.
Own Id: OTP-15101

 Improvements and New Features

	The gen_server has gotten a new callback handle_continue/2 for check
pointing the state. This is useful at least when implementing behaviours on
top of gen_server and for some start up scenarios.
Own Id: OTP-13019 Aux Id: PR-1490

	The semantics of timeout parameter {clean_timeout,infinity} to
gen_statem:call/3 has been changed to use a proxy process for the call. With
this change clean_timeout implicates a proxy process with no exceptions.
This may be a hard to observe incompatibility: in the presence of network
problems a late reply could arrive in the caller's message queue when catching
errors. That will not happen after this correction.
The semantics of timeout parameter infinity has not been changed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13073 Aux Id: PR-1595

	A new logging API is added to Erlang/OTP, see the logger manual page, and
section Logging in the Kernel User's Guide.
Calls to error_logger are automatically redirected to the new API, and
legacy error logger event handlers can still be used. It is, however,
recommended to use the Logger API directly when writing new code.
Notice the following potential incompatibilities:
	Kernel configuration parameters error_logger still works, but is overruled
if the default handler's output destination is configured with Kernel
configuration parameter logger.
In general, parameters for configuring error logger are overwritten by new
parameters for configuring Logger.

	The concept of SASL error logging is deprecated, meaning that by default the
SASL application does not affect which log events are logged.
By default, supervisor reports and crash reports are logged by the default
Logger handler started by Kernel, and end up at the same destination
(terminal or file) as other standard log event from Erlang/OTP.
Progress reports are not logged by default, but can be enabled by setting
the primary log level to info, for example with the Kernel configuration
parameter logger_level.
To obtain backwards compatibility with the SASL error logging functionality
from earlier releases, set Kernel configuration parameter
logger_sasl_compatible to true. This prevents the default Logger handler
from logging any supervisor-, crash-, or progress reports. Instead, SASL
adds a separate Logger handler during application start, which takes care of
these log events. The SASL configuration parameters sasl_error_logger and
sasl_errlog_type specify the destination (terminal or file) and severity
level to log for these events.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce
changes to the Logger API and functionality in patches following this release.
These changes might or might not be backwards compatible with the initial
version.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13295

	Add functions calendar:system_time_to_local_time/2 and
calendar:system_time_to_universal_time/2.
Own Id: OTP-13413

	Functions rand:uniform_real/0 and rand:uniform_real_s/1 have been added.
They produce uniformly distributed numbers in the range 0.0 =< X < 1.0 that
are as close to random real numbers as Normalized IEEE 754 Double Precision
allows. Because the random real number exactly 0.0 is infinitely improbable
they will never return exactly 0.0.
These properties are useful when you need to call for example math:log(X) or
1 / X on a random value X, since that will never fail with a number from
these new functions.
Own Id: OTP-13764 Aux Id: PR-1574

	Added maps:iterator/0 and maps:next/1 to be used for iterating over the
key-value associations in a map.
Own Id: OTP-14012

	Changed the default behaviour of .erlang loading: .erlang is no longer
loaded from the current directory. c:erlangrc(PathList) can be used to
search and load an .erlang file from user specified directories.
escript, erlc, dialyzer and typer no longer load an .erlang at all.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14439

	Added new uri_string module to stdlib for handling URIs (RFC 3986).
Own Id: OTP-14496

	Update Unicode specification to version 10.0.
Own Id: OTP-14503

	filelib:wildcard() now allows characters with a special meaning to be
escaped using backslashes.
This is an incompatible change, but note that the use of backslashes in
wildcards would already work differently on Windows and Unix. Existing calls
to filelib:wildcard() needs to be updated. On Windows, directory separators
must always be written as a slash.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14577

	The supervisor now stores its child specifications in a map instead of a list.
This causes a significant improvement when starting many children under a
non-simple_one_for_one supervisor.
Own Id: OTP-14586

	The base64 module is optimized.
Note that the functions encode/1, decode/1, and mime_decode/1 fail
unless called with an argument of the documented type. They used to accept any
iodata/0.
Own Id: OTP-14624 Aux Id: PR-1565

	Add function lists:search/2.
Own Id: OTP-14675 Aux Id: PR-102

	uri_string module extended with functions for handling
application/x-www-form-urlencoded query strings based on the HTML5
specification.
Own Id: OTP-14747

	Add functions calendar:rfc3339_to_system_time/1,2 and
calendar:system_time_to_rfc3339/1,2.
Own Id: OTP-14764

	The stack traces returned by the functions of the erl_eval module more
accurately reflect where the exception occurred.
Own Id: OTP-14826 Aux Id: PR 1540

	Add options atime, mtime, ctime, uid, and gid to the
erl_tar:add/3,4 functions.
Own Id: OTP-14834 Aux Id: PR 1608

	Added ets:whereis/1 for retrieving the table identifier of a named table.
Own Id: OTP-14884

	Improved URI normalization functions in the uri_string module.
Own Id: OTP-14910

	The new functions io_lib:fwrite/3 and io_lib:format/3 take a third
argument, an option list. The only option is chars_limit, which is used for
limiting the number of returned characters. The limit is soft, which means
that the number of returned characters exceeds the limit with at most a
smallish amount. If the limit is set, the functions format/3 and fwrite/3
try to distribute the number of characters evenly over the control sequences
pPswW. Furthermore, the control sequences pPwP try to distribute the
number of characters evenly over substructures.
A modification of the control sequences pPwW is that even if there is no
limit on the number of returned characters, all associations of a map are
printed to the same depth. The aim is to give a more consistent output as the
order of map keys is not defined. As before, if the depth is less than the
number of associations of a map, the selection of associations to print is
arbitrary.
Own Id: OTP-14983

	Add functions ordsets:is_empty/1 and sets:is_empty/1.
Own Id: OTP-14996 Aux Id: ERL-557, PR-1703

	Improve performance of string:uppercase/1, string:lowercase/1 and
string:casefold/1 when handling ASCII characters.
Own Id: OTP-14998

	External funs with literal values for module, name, and arity (e.g.
erlang:abs/1) are now treated as literals. That means more efficient code
that produces less garbage on the heap.
Own Id: OTP-15003

	sys:statistics(Pid,get) did not report 'out' messages from gen_server. This is
now corrected.
Own Id: OTP-15047

	A sys debug function can now have the format {Id,Fun,State} in addition to
the old {Fun,State}. This allows installing multiple instances of a debug
fun.
Own Id: OTP-15048

	The lib module is removed:
	lib:error_message/2 is removed.
	lib:flush_receive/0 is removed.
	lib:nonl/1 is removed.
	lib:progname/0 is replaced by ct:get_progname/0.
	lib:send/2 is removed.
	lib:sendw/2 is removed.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15072 Aux Id: PR 1786, OTP-15114

	Function ets:delete_all_objects/1 now yields the scheduler thread for large
tables that take significant time to clear. This to improve real time
characteristics of other runnable processes.
Own Id: OTP-15078

	In control sequences of the functions io:fwrite/2,3 and io_lib:fwrite/2,3
containing p or P, a field width of value 0 means that no line breaks
are inserted. This is in contrast to the old behaviour, where 0 used to
insert line breaks after every subterm. To insert line breaks after every
subterm, a field width of value 1 can be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15103 Aux Id: ERL-607

 STDLIB 3.4.5.1

 Improvements and New Features

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

 STDLIB 3.4.5

 Fixed Bugs and Malfunctions

	The Module:init/1 function in gen_statem may return an actions list
containing any action, but an erroneous check only allowed state enter actions
so e.g {next_event,internal,event} caused a server crash. This bug has been
fixed.
Own Id: OTP-13995

 STDLIB 3.4.4

 Fixed Bugs and Malfunctions

	Correct filelib:find_source() and filelib:find_file() to by default also
search one level below src. This is in accordance with the Design Principles
which states that an application can have Erlang source files one level below
the src directory.
Own Id: OTP-14832 Aux Id: ERL-527

	The contract of erl_tar:table/2 is corrected.
Own Id: OTP-14860 Aux Id: PR 1670

	Correct a few contracts.
Own Id: OTP-14889

	Fix string:prefix/2 to handle an empty string as second argument.
Own Id: OTP-14942 Aux Id: PR-1702

 STDLIB 3.4.3

 Fixed Bugs and Malfunctions

	Make ets:i/1 exit cleaner when ^D is input while browsing a table. Only the
old Erlang shell is affected (erl flag -oldshell).
Own Id: OTP-14663

	Fixed handling of windows UNC paths in module filename.
Own Id: OTP-14693

 Improvements and New Features

	Improve performance of the new string functionality when handling ASCII
characters.
Own Id: OTP-14670

	Added a clarification to the documentation of unicode:characters_to_list/2.
Own Id: OTP-14798

 STDLIB 3.4.2

 Fixed Bugs and Malfunctions

	Fix a bug in the Erlang shell where recursively defined records with typed
fields could cause a loop.
Own Id: OTP-14488 Aux Id: PR-1489

	Make edlin handle grapheme clusters instead of codepoints to improve the
handling multi-codepoints characters.
Own Id: OTP-14542

	There could be false warnings for erlang:get_stacktrace/0 being used outside
of a try block when using multiple catch clauses.
Own Id: OTP-14600 Aux Id: ERL-478

 Improvements and New Features

	The Erlang code linter no longer checks that the functions mentioned in
nowarn_deprecated_function options are declared in the module.
Own Id: OTP-14378

	General Unicode improvements.
Own Id: OTP-14462

 STDLIB 3.4.1

 Fixed Bugs and Malfunctions

	A bug in proc_lib:format() introduced in Erlang/OTP 20.0 is corrected.
Own Id: OTP-14482 Aux Id: PR-1488

	Fix string:len/1 to be compatible with previous versions.
Own Id: OTP-14487 Aux Id: ERIERL-40

	In OTP-20.0, the behavior of c, make, and ct_make was changed so that in some
cases the beam files by default would be written to the directory where the
source files were found. This is now changed back to the old behavior so beam
files are by default written to current directory.
Own Id: OTP-14489 Aux Id: ERL-438

 STDLIB 3.4

 Fixed Bugs and Malfunctions

	For many releases, it has been legal to override a BIF with a local function
having the same name. However, calling a local function with the same name as
guard BIF as filter in a list comprehension was not allowed.
Own Id: OTP-13690

	A new (default) pseudo-random number generator algorithm Xoroshiro116+ has
been implemented in the rand module.
The old algorithm implementations had a number of flaws so they are all
deprecated, but corrected versions of two of them have been added. See the
documentation.
Own Id: OTP-14295 Aux Id: PR-1372

	The Erlang shell, qlc:string_to_handle(), and the Debugger (the Evaluator
area and Edit variable window of the Bindings area) can parse pids, ports,
references, and external funs, as long as they can be created in the running
system.
Own Id: OTP-14296

	Internal code change: Calls to catch followed by a call to
erlang:get_stacktrace/0 has been rewritten to use try instead of catch
to make the code future-proof.
Own Id: OTP-14400

	The ms_transform module, used by ets:fun2ms/1 and dbg:fun2ms/1,
evaluates constant arithmetic expressions. This is necessary since the Erlang
compiler, which normally evaluates constant expressions, does not recognize
the format generated by ms_transform.
Own Id: OTP-14454 Aux Id: ERIERL-29

	The state machine engine gen_statem can now handle generic time-outs
(multiple named) as well as absolute time-out time. See the documentation.
The gen_statem callback Module:init/1 has become mandatory to harmonize
with other gen_* modules. This may be an incompatibility for gen_statem
callback modules that use gen_statem:enter_loop/4-6.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14531

 Improvements and New Features

	Improved unicode support for strings. Added normalization functions in the
unicode module. Extended the string module API with new functions with
improved unicode handling and that works on grapheme clusters. The new
functions operates on the unicode:chardata() type,
thus they also accept UTF-8 binaries as input.
The old string API have been marked as obsolete. The return values have been
changed for some error cases.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10289 Aux Id: OTP-10309

	There are two new guard BIFs 'floor/1' and
'ceil/1'. They both return integers. In the 'math' module,
there are two new BIFs with the same names that return floating point values.
Own Id: OTP-13692

	Making code_change, terminate and handle_info callbacks optional in the OTP
behaviours.
Own Id: OTP-13801

	The support for Dets files created with Erlang/OTP R7 and earlier is removed.
Own Id: OTP-13830

	Replaced usage of deprecated symbolic time unit
representations.
Own Id: OTP-13831 Aux Id: OTP-13735

	The function fmod/2 has been added to the math module.
Own Id: OTP-14000

	The EXIT signals received from processes using proc_lib now looks like EXIT
signals from processes that were spawned using spawn_link. In particular,
that means that the stack trace is now included in the EXIT signal so that it
can see where the process crashed.
Own Id: OTP-14001

	sets:add_element/2 is faster when adding an element that is already present,
and sets:del_element/2 is faster when the element to be deleted is not
present. This optimization can make certain operations, such as sets:union/2
with many overlapping elements, up to two orders of magnitude faster.
Own Id: OTP-14035

	Add information in doc about supervisor shutdown reason when maximum restart
frequency is reached.
Own Id: OTP-14037 Aux Id: PR-1233

	Added rand:jump/[0|1] functions.
Own Id: OTP-14038 Aux Id: PR-1235

	Functions for detecting changed code has been added. code:modified_modules/0
returns all currently loaded modules that have changed on disk.
code:module_status/1 returns the status for a module. In the shell and in
c module, mm/0 is short for code:modified_modules/0, and lm/0 reloads
all currently loaded modules that have changed on disk.
Own Id: OTP-14059

	Each assert macro in assert.hrl now has a corresponding version with an
extra argument, for adding comments to assertions. These can for example be
printed as part of error reports, to clarify the meaning of the check that
failed.
Own Id: OTP-14066

	error_logger_tty_h and error_logger_file_h now inserts the node
information for nonlocal messages before the message itself instead of after,
both for readability and so as not to change the line termination property at
the end of the message.
Own Id: OTP-14068

	The Erlang code linter checks for badly formed type constraints.
Own Id: OTP-14070 Aux Id: PR-1214

	By default, there will now be a warning when export_all is used. The warning
can be disabled using nowarn_export_all.
Own Id: OTP-14071

	When a gen_server process crashes, the stacktrace for the client will be
printed to facilitate debugging.
Own Id: OTP-14089

	Optimized ETS operations by changing table identifier type from integer to
reference. The reference enables a more direct mapping to the table with less
potential lock contention and makes especially creation and deletion of tables
scale much better.
The change of the opaque type for the ETS table identifiers may cause failure
in code that make faulty assumptions about this opaque type.
Note
The number of tables stored at one Erlang node used to be limited. This is
no longer the case (except by memory usage). The previous default limit was
about 1400 tables and could be increased by setting the environment variable
ERL_MAX_ETS_TABLES before starting the Erlang runtime system. This hard
limit has been removed, but it is currently useful to set the
ERL_MAX_ETS_TABLES anyway. It should be set to an approximate of the
maximum amount of tables used. This since an internal table for named tables
is sized using this value. If large amounts of named tables are used and
ERL_MAX_ETS_TABLES hasn't been increased, the performance of named table
lookup will degrade.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14094

	take/2 has been added to dict, orddict, and gb_trees. take_any/2 has
been added to gb_trees.
Own Id: OTP-14102

	Extend gen_event API to handle options as well.
Own Id: OTP-14123

	Advice on how to tune the supervisor restart frequency (intensity and period)
is added to System Documentation - Design Principles - Supervisor Behaviour.
Own Id: OTP-14168 Aux Id: PR-1289

	gen_fsm is deprecated and is replaced by gen_statem, however for backwards
compatibility reasons gen_fsm may continue to exist as an undocumented feature
for quite some time.
Own Id: OTP-14183

	The shell functions c/1 and c/2 have been extended so that if the argument
is a module name instead of a file name, it automatically locates the .beam
file and the corresponding source file, and then recompiles the module using
the same compiler options (plus any options passed to c/2). If compilation
fails, the old beam file is preserved. Also adds c(Mod, Opts, Filter), where
the Filter argument allows you to remove old compiler options before the new
options are added.
New utility functions file_find/2/3 and find_source/1/2/3 have been added
to filelib.
Own Id: OTP-14190

	erl_tar in previous versions of OTP only supports the USTAR format. That
limited path names to at most 255 bytes, and did not support Unicode
characters in names in a portable way.
erl_tar now has support for reading tar archives in the formats currently in
common use, such as v7, STAR, USTAR, PAX, and GNU tar's extensions to the
STAR/USTAR format. When writing tar archives, erl_tar can now write them in
the PAX format if necessary (for example, to support very long filenames or
filenames with Unicode characters). If possible, erl_tar will still write
tar archives in the USTAR for maximum portability.
Own Id: OTP-14226

	base64:mime_decode/1 has been optimized so that it is now almost as fast
asbase64:decode/1; it used be noticeably slower.
Own Id: OTP-14245

	erl_tar will now strip any leading '/' from pathnames when extracting
files from a tar archive and write a message to the error logger. There is
also new check for directory traversal attacks; if a relative path points
above the current working directory the extraction will be aborted.
Own Id: OTP-14278

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

	The Crypto application now supports generation of cryptographically strong
random numbers (floats < 1.0 and integer arbitrary ranges) as a plugin to the
'rand' module.
Own Id: OTP-14317 Aux Id: PR-1372

	Add new function ets:select_replace/2 which performs atomic
"compare-and-swap" operations for ETS objects using match specifications.
Own Id: OTP-14319 Aux Id: PR-1076

	The Erlang code linter checks for bad dialyzer attributes. It also checks
for bad type variables in type declarations.
Own Id: OTP-14323

	Two new functions has been implemented in the rand module; normal/2 and
normal_s/3, that both produce normal distribution (pseudo) random numbers
with mean value and variance according to arguments.
Own Id: OTP-14328 Aux Id: PR-1382

	Upgraded the OTP internal PCRE library from version 8.33 to version 8.40. This
library is used for implementation of the re regular expressions module.
Besides various bug fixes, the new version allows for better stack protection.
In order to utilize this feature, the stack size of normal scheduler threads
is now by default set to 128 kilo words on all platforms. The stack size of
normal scheduler threads can be set upon system start by passing the
+sss command line argument to
the erl command.
See
http://pcre.org/original/changelog.txt
for information about changes made to PCRE between the versions 8.33 and 8.40.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14331 Aux Id: ERL-208

	Added function re:version/0 which returns information about the OTP internal
PCRE version used for implementation of the re module.
Own Id: OTP-14347 Aux Id: PR-1412

	The format of debug information that is stored in BEAM files (when
debug_info is used) has been changed. The purpose of the change is to better
support other BEAM-based languages such as Elixir or LFE.
All tools included in OTP (dialyzer, debugger, cover, and so on) will handle
both the new format and the previous format. Tools that retrieve the debug
information using beam_lib:chunk(Beam, [abstract_code]) will continue to
work with both the new and old format. Tools that call
beam_lib:chunk(Beam, ["Abst"]) will not work with the new format.
For more information, see the description of debug_info in the documentation
for beam_lib and the description of the {debug_info,{Backend,Data}} option
in the documentation for compile.
Own Id: OTP-14369 Aux Id: PR-1367

	Add option hibernate_after to gen_server, gen_statem and gen_event. Also added
to the deprecated gen_fsm behaviour.
Own Id: OTP-14405

	The size of crash reports created by gen_server, gen_statem and proc_lib
is limited with aid of the Kernel application variable
error_logger_format_depth. The purpose is to limit the size of the messages
sent to the error_logger process when processes with huge message queues or
states crash.
The crash report generated by proc_lib includes the new tag
message_queue_len. The neighbour report also includes the new tag
current_stacktrace. Finally, the neighbour report no longer includes the
tags messages and dictionary.
The new function error_logger:get_format_depth/0 can be used to retrieve the
value of the Kernel application variable error_logger_format_depth.
Own Id: OTP-14417

 STDLIB 3.3

 Fixed Bugs and Malfunctions

	An escript with only two lines would not work.
Own Id: OTP-14098

	Characters ($char) can be used in constant pattern expressions. They can
also be used in types and contracts.
Own Id: OTP-14103 Aux Id: ERL-313

	The signatures of erl_parse:anno_to_term/1 and erl_parse:anno_from_term/1
are corrected. Using these functions no longer results in false Dialyzer
warnings.
Own Id: OTP-14131

	Pretty-printing of maps is improved.
Own Id: OTP-14175 Aux Id: seq13277

	If any of the following functions in the zip module crashed, a file would be
left open: extract(), unzip(), create(), or zip(). This has been
corrected.
A zip file having a "Unix header" could not be unpacked.
Own Id: OTP-14189 Aux Id: ERL-348, ERL-349

	Improve the Erlang shell's tab-completion of long names.
Own Id: OTP-14200 Aux Id: ERL-352

	The reference manual for sys had some faulty information about the
'get_modules' message used by processes where modules change dynamically
during runtime. The documentation is now corrected.
Own Id: OTP-14248 Aux Id: ERL-367

 Improvements and New Features

	Bug fixes, new features and improvements to gen_statem:
A new type init_result/1 has replaced the old init_result/0, so if you used
that old type (that was never documented) you have to change your code, which
may be regarded as a potential incompatibility.
Changing callback modes after code change did not work since the new callback
mode was not recorded. This bug has been fixed.
The event types state_timeout and {call,From} could not be generated with a
{next_event,EventType,EventContent} action since they did not pass the
runtime type check. This bug has now been corrected.
State entry calls can now be repeated using (new) state callback returns
{repeatstate,...}, {repeat_state_and_data,} and repeat_state_and_data.
There have been lots of code cleanup in particular regarding timer handling.
For example is async cancel_timer now used. Error handling has also been
cleaned up.
To align with probable future changes to the rest of gen_*, terminate/3 has
now got a fallback and code_change/4 is not mandatory.
Own Id: OTP-14114

	filename:safe_relative_path/1 to sanitize a relative path has been added.
Own Id: OTP-14215

 STDLIB 3.2

 Fixed Bugs and Malfunctions

	When a simple_one_for_one supervisor is shutting down, and a child exits with
an exit reason of the form {shutdown, Term}, an error report was earlier
printed. This is now corrected.
Own Id: OTP-13907 Aux Id: PR-1158, ERL-163

	Allow empty list as parameter of the fun used with dbg:fun2ms/1.
Own Id: OTP-13974

 Improvements and New Features

	The new behaviour gen_statem has been improved with 3 new features: the
possibility to use old style non-proxy timeouts for gen_statem:call/2,3, state
entry code, and state timeouts. These are backwards compatible. Minor code and
documentation improvements has been performed including a borderline semantics
correction of timeout zero handling.
Own Id: OTP-13929 Aux Id: PR-1170, ERL-284

 STDLIB 3.1

 Fixed Bugs and Malfunctions

	The zip:unzip/1,2 and zip:extract/1,2 functions have been updated to
handle directory traversal exploits. Any element in the zip file that contains
a path that points to a directory above the top level working directory,
cwd, will instead be extracted in cwd. An error message is printed for any
such element in the zip file during the unzip operation. The keep_old_files
option determines if a file will overwrite a previous file with the same name
within the zip file.
Own Id: OTP-13633

	Correct the contracts for ets:match_object/1,3.
Own Id: OTP-13721 Aux Id: PR-1113

	Errors in type specification and Emacs template generation for
gen_statem:code_change/4 has been fixed from bugs.erlang.org's Jira cases
ERL-172 and ERL-187.
Own Id: OTP-13746 Aux Id: ERL-172, ERL-187

 Improvements and New Features

	gen_statem has been changed to set the callback mode for a server to what
Module:callback_mode/0 returns. This facilitates e.g code downgrade since the
callback mode now becomes a property of the currently active code, not of the
server process.
Exception handling from Module:init/1 has also been improved.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13752

 STDLIB 3.0.1

 Fixed Bugs and Malfunctions

	Correct a bug regarding typed records in the Erlang shell. The bug was
introduced in OTP-19.0.
Own Id: OTP-13719 Aux Id: ERL-182

 STDLIB 3.0

 Fixed Bugs and Malfunctions

	Fix a race bug affecting dets:open_file/2.
Own Id: OTP-13260 Aux Id: seq13002

	Don't search for non-existing Map keys twice
For maps:get/2,3 and maps:find/2, searching for an immediate key, e.g. an
atom, in a small map, the search was performed twice if the key did not exist.
Own Id: OTP-13459

	Avoid stray corner-case math errors on Solaris, e.g. an error is thrown on
underflows in exp() and pow() when it shouldn't be.
Own Id: OTP-13531

	Fix linting of map key variables
Map keys cannot be unbound and then used in parallel matching.
Example: #{ K := V } = #{ k := K } = M. This is illegal if 'K' is not
bound.
Own Id: OTP-13534 Aux Id: ERL-135

	Fixed a bug in re on openbsd where sometimes re:run would return an incorrect
result.
Own Id: OTP-13602

	To avoid potential timer bottleneck on supervisor restart, timer server is no
longer used when the supervisor is unable to restart a child.
Own Id: OTP-13618 Aux Id: PR-1001

	The Erlang code preprocessor (epp) can handle file names spanning over many
tokens. Example: -include("a" "file" "name")..
Own Id: OTP-13662 Aux Id: seq13136

 Improvements and New Features

	The types of The Abstract Format in the erl_parse module have been refined.
Own Id: OTP-10292

	Undocumented syntax for function specifications,
-spec F/A :: Domain -> Range, has been removed (without deprecation).
Using the is_subtype(V, T) syntax for constraints (in function
specifications) is no longer documented, and the newer syntax V :: T should
be used instead. The Erlang Parser still recognizes the is_subtype syntax,
and will continue to do so for some time.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11879

	The 'random' module has been deprecated. Use the 'rand' module instead.
Own Id: OTP-12502 Aux Id: OTP-12501

	Background: In record fields with a type declaration but without an
initializer, the Erlang parser inserted automatically the singleton type
'undefined' to the list of declared types, if that value was not present
there. That is, the record declaration:
-record(rec, {f1 :: float(), f2 = 42 :: integer(), f3 ::
some_mod:some_typ()}).
was translated by the parser to:
	-record(rec, {f1 :: float()	'undefined', f2 = 42 :: integer(), f3 ::
	some_mod:some_typ()	'undefined'}).

The rationale for this was that creation of a "dummy" #rec{} record should
not result in a warning from dialyzer that, for example, the implicit
initialization of the #rec.f1 field violates its type declaration.
Problems: This seemingly innocent action has some unforeseen consequences.
For starters, there is no way for programmers to declare that e.g. only floats
make sense for the f1 field of #rec{} records when there is no "obvious"
default initializer for this field. (This also affects tools like PropEr that
use these declarations produced by the Erlang parser to generate random
instances of records for testing purposes.)
It also means that dialyzer does not warn if e.g. an
is_atom/1 test or something more exotic like an
atom_to_list/1 call is performed on the value of the
f1 field.
Similarly, there is no way to extend dialyzer to warn if it finds record
constructions where f1 is not initialized to some float.
Last but not least, it is semantically problematic when the type of the field
is an opaque type: creating a union of an opaque and a structured type is very
problematic for analysis because it fundamentally breaks the opacity of the
term at that point.
Change: To solve these problems the parser will not automatically insert the
'undefined' value anymore; instead the user has the option to choose the
places where this value makes sense (for the field) and where it does not and
insert the | 'undefined' there manually.
Consequences of this change: This change means that dialyzer will issue a
warning for all places where records with uninitialized fields are created and
those fields have a declared type that is incompatible with 'undefined'
(e.g. float/0). This warning can be suppressed easily by adding
| 'undefined' to the type of this field. This also adds documentation that
the user really intends to create records where this field is uninitialized.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12719

	Remove deprecated functions in the modules erl_scan and erl_parse.
Own Id: OTP-12861

	The pre-processor can now expand the ?FUNCTION_NAME and ?FUNCTION_ARITY
macros.
Own Id: OTP-13059

	A new behaviour gen_statem has been implemented. It has been thoroughly
reviewed, is stable enough to be used by at least two heavy OTP applications,
and is here to stay. But depending on user feedback, we do not expect but
might find it necessary to make minor not backwards compatible changes into
OTP-20.0, so its state can be designated as "not quite experimental"...
The gen_statem behaviour is intended to replace gen_fsm for new code. It
has the same features and add some really useful:
	State code is gathered
	The state can be any term
	Events can be postponed
	Events can be self generated
	A reply can be sent from a later state
	There can be multiple sys traceable replies

The callback model(s) for gen_statem differs from the one for gen_fsm, but
it is still fairly easy to rewrite from gen_fsm to gen_statem.
Own Id: OTP-13065 Aux Id: PR-960

	Optimize binary:split/2 and binary:split/3 with native BIF implementation.
Own Id: OTP-13082

	Background: The types of record fields have since R12B been put in a separate
form by epp:parse_file(), leaving the record declaration form untyped. The
separate form, however, does not follow the syntax of type declarations, and
parse transforms inspecting -type() attributes need to know about the
special syntax. Since the compiler stores the return value of
epp:parse_file() as debug information in the abstract code chunk ("Abst"
or abstract_code), tools too need to know about the special syntax, if they
inspect -type() attributes in abstract code.
Change: No separate type form is created by epp:parse_file(), but the type
information is kept in the record fields. This means that all parse transforms
and all tools inspecting -record() declarations need to recognize
{typed_record_field, Field, Type}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13148

	Unsized fields of the type bytes in binary generators are now forbidden.
(The other ways of writing unsized fields, such as binary, are already
forbidden.)
Own Id: OTP-13152

	The type map/0 is built-in, and cannot be redefined.
Own Id: OTP-13153

	Let dets:open_file() exit with a badarg message if given a raw file name
(a binary).
Own Id: OTP-13229 Aux Id: ERL-55

	Add filename:basedir/2,3
basedir returns suitable path(s) for 'user_cache', 'user_config', 'user_data',
'user_log', 'site_config' and 'site_data'. On linux and linux like systems the
paths will respect the XDG environment variables.
Own Id: OTP-13392

	There are new preprocessor directives -error(Term) and -warning(Term) to
cause a compilation error or a compilation warning, respectively.
Own Id: OTP-13476

	Optimize '++' operator and lists:append/2 by using a single pass to build
a new list while checking for properness.
Own Id: OTP-13487

	Add maps:update_with/3,4 and maps:take/2
Own Id: OTP-13522 Aux Id: PR-1025

	lists:join/2 has been added. Similar to string:join/2 but works with
arbitrary lists.
Own Id: OTP-13523

	Obfuscate asserts to make Dialyzer shut up.
Own Id: OTP-13524 Aux Id: PR-1002

	Supervisors now explicitly add their callback module in the return from
sys:get_status/1,2. This is to simplify custom supervisor implementations. The
Misc part of the return value from sys:get_status/1,2 for a supervisor is now:
[{data, [{"State", State}]},{supervisor,[{"Callback",Module}]}]
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13619 Aux Id: PR-1000

	Relax translation of initial calls in proc_lib, i.e. remove the restriction
to only do the translation for gen_server and gen_fsm. This enables user
defined gen based generic callback modules to be displayed nicely in c:i()
and observer.
Own Id: OTP-13623

	The function queue:lait/1 (misspelling of liat/1) is now deprecated.
Own Id: OTP-13658

 STDLIB 2.8.0.1

 Improvements and New Features

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

 STDLIB 2.8

 Fixed Bugs and Malfunctions

	Fix evaluation in matching of bound map key variables in the interpreter.
Prior to this patch, the following code would not evaluate:
X = key,(fun(#{X := value}) -> true end)(#{X => value})
Own Id: OTP-13218

	Fix erl_eval not using non-local function handler.
Own Id: OTP-13228 Aux Id: ERL-32

	The Erlang Code Linter no longer crashes if there is a -deprecated()
attribute but no -module() declaration.
Own Id: OTP-13230 Aux Id: ERL-62

	The timestamp in the result returned by dets:info(Tab, safe_fixed) was
unintentionally broken as a result of the time API rewrites in OTP 18.0. This
has now been fixed.
Own Id: OTP-13239 Aux Id: OTP-11997

	A rare race condition in beam_lib when using encrypted abstract format has
been eliminated.
Own Id: OTP-13278

	Improved maps:with/2 and maps:without/2 algorithms
The new implementation speeds up the execution significantly for all sizes of
input.
Own Id: OTP-13376

 Improvements and New Features

	Time warp safety improvements.
Introduced the options monotonic_timestamp, and strict_monotonic_timestamp
to the trace, sequential trace, and system profile functionality. This since
the already existing timestamp option is not time warp safe.
Introduced the option safe_fixed_monotonic_time to ets:info/2 and
dets:info/2. This since the already existing safe_fixed option is not time
warp safe.
Own Id: OTP-13222 Aux Id: OTP-11997

	In the shell Ctrl+W (delete word) will no longer consider "." as being part of
a word.
Own Id: OTP-13281

 STDLIB 2.7

 Fixed Bugs and Malfunctions

	The Erlang Pretty Printer uses :: for function type constraints.
A bug concerning pretty printing of annotated type union elements in map pair
types has been fixed.
Some minor issues regarding the documentation of types and specs have been
corrected.
Own Id: OTP-13084

	The shell command rp prints strings as lists of integers if pretty printing
of lists is set to false.
Own Id: OTP-13145

	The shell would crash if a bit syntax expression with conflicting types were
given (e.g. if a field type was given as 'integer-binary'). (Thanks to
Aleksei Magusev for reporting this bug.)
Own Id: OTP-13157

	The rand:export_seed/0 would never return 'undefined' even if no seed has
previously been created. Fixed to return 'undefined' if there is no seed in
the process dictionary.
Own Id: OTP-13162

 Improvements and New Features

	Add support for the Delete, Home and End keys in the Erlang shell.
Own Id: OTP-13032

	beam_lib:all_chunks/1 and beam_lib:build_module/1 have been documented.
Own Id: OTP-13063

 STDLIB 2.6

 Fixed Bugs and Malfunctions

	In OTP 18.0, qlc does not handle syntax errors well. This bug has been
fixed.
Own Id: OTP-12946

	Optimize zip:unzip/2 when uncompressing to memory.
Own Id: OTP-12950

	The STDLIB reference manual is updated to show correct information about the
return value of gen_fsm:reply/2.
Own Id: OTP-12973

	re:split2,3 and re:replace/3,4 now correctly handles pre-compiled patterns
that have been compiled using the 'unicode' option.
Own Id: OTP-12977

	Export shell:catch_exception/1 as documented.
Own Id: OTP-12990

 Improvements and New Features

	A mechanism for limiting the amount of text that the built-in error logger
events will produce has been introduced. It is useful for limiting both the
size of log files and the CPU time used to produce them.
This mechanism is experimental in the sense that it may be changed if it turns
out that it does not solve the problem it is supposed to solve. In that case,
there may be backward incompatible improvements to this mechanism.
See the documentation for the config parameter error_logger_format_depth in
the Kernel application for information about how to turn on this feature.
Own Id: OTP-12864

 STDLIB 2.5

 Fixed Bugs and Malfunctions

	Fix handling of single dot in filename:join/2
The reference manual says that filename:join(A,B) is equivalent to
filename:join([A,B]). In some rare cases this turns out not to be true. For
example:
filename:join("/a/.","b") -> "/a/./b" vs
filename:join(["/a/.","b"]) -> "/a/b".
This has been corrected. A single dot is now only kept if it occurs at the
very beginning or the very end of the resulting path.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12158

	The undocumented option generic_debug for gen_server has been removed.
Own Id: OTP-12183

	erl_lint:icrt_export/4 has been rewritten to make the code really follow the
scoping rules of Erlang, and not just in most situations by accident.
Own Id: OTP-12186

	Add 'trim_all' option to binary:split/3
This option can be set to remove _ALL_ empty parts of the result of a call
to binary:split/3.
Own Id: OTP-12301

	Correct orddict(3) regarding evaluation order of fold() and map/0.
Own Id: OTP-12651 Aux Id: seq12832

	Correct maps module error exceptions
Bad input to maps module function will now yield the following exceptions:
	{badmap, NotMap}, or
	badarg.

Own Id: OTP-12657

	It is now possible to paste text in JCL mode (using Ctrl-Y) that has been
copied in the previous shell session. Also a bug that caused the JCL mode to
crash when pasting text has been fixed.
Own Id: OTP-12673

	Add uptime() shell command.
Own Id: OTP-12752

	Cache nowarn_bif_clash functions in erl_lint.
This patch stores nowarn_bif_clash in the lint record. By using erlc
+'{eprof,lint_module}' when compiling the erlang parser, we noticed the time
spent on nowarn_function/2 reduced from 30% to 0.01%.
Own Id: OTP-12754

	Optimize the Erlang Code Linter by using the cached filename information.
Own Id: OTP-12772

	If a child of a simple_one_for_one returns ignore from its start function no
longer store the child for any restart type. It is not possible to restart or
delete the child because the supervisor is a simple_one_for_one.
Own Id: OTP-12793

	Make ets:file2tab preserve enabled read_concurrency and
write_concurrency options for tables.
Own Id: OTP-12814

	There are many cases where user code needs to be able to distinguish between a
socket that was closed normally and one that was aborted. Setting the option
{show_econnreset, true} enables the user to receive ECONNRESET errors on
both active and passive sockets.
Own Id: OTP-12841

 Improvements and New Features

	Allow maps for supervisor flags and child specs
Earlier, supervisor flags and child specs were given as tuples. While this is
kept for backwards compatibility, it is now also allowed to give these
parameters as maps, see sup_flags and
child_spec.
Own Id: OTP-11043

	A new system message, terminate, is added. This can be sent with
sys:terminate/2,3. If the receiving process handles system messages properly
it will terminate shortly after receiving this message.
The new function proc_lib:stop/1,3 utilizes this new system message and
monitors the receiving process in order to facilitate a synchronous stop
mechanism for 'special processes'.
proc_lib:stop/1,3 is used by the following functions:
	gen_server:stop/1,3 (new)
	gen_fsm:stop/1,3 (new)
	gen_event:stop/1,3 (modified to be synchronous)
	wx_object:stop/1,3 (new)

Own Id: OTP-11173 Aux Id: seq12353

	Remove the pg module, which has been deprecated through OTP-17, is now
removed from the STDLIB application. This module has been marked experimental
for more than 15 years, and has largely been superseded by the pg2 module
from the Kernel application.
Own Id: OTP-11907

	New BIF: erlang:get_keys/0, lists all keys associated with the process
dictionary. Note: erlang:get_keys/0 is auto-imported.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12151 Aux Id: seq12521

	Add three new functions to io_lib-- scan_format/2, unscan_format/1, and
build_text/1-- which expose the parsed form of the format control sequences
to make it possible to easily modify or filter the input to io_lib:format/2.
This can e.g. be used in order to replace unbounded-size control sequences
like ~w or ~p with corresponding depth-limited ~W and ~P before doing
the actual formatting.
Own Id: OTP-12167

	Introduce the erl_anno module, an abstraction of the second element of
tokens and tuples in the abstract format.
Own Id: OTP-12195

	Support variables as Map keys in expressions and patterns
Erlang will accept any expression as keys in Map expressions and it will
accept literals or bound variables as keys in Map patterns.
Own Id: OTP-12218

	The last traces of Mnemosyne Rules have been removed.
Own Id: OTP-12257

	Properly support maps in match_specs
Own Id: OTP-12270

	New function ets:take/2. Works the same as ets:delete/2 but also returns
the deleted object(s).
Own Id: OTP-12309

	string:tokens/2 is somewhat faster, especially if the list of separators
only contains one separator character.
Own Id: OTP-12422 Aux Id: seq12774

	The documentation of the Abstract Format (in the ERTS User's Guide) has been
updated with types and specification. (Thanks to Anthony Ramine.)
The explicit representation of parentheses used in types of the abstract
format has been removed. Instead the new functions
erl_parse:type_inop_prec() and erl_parse:type_preop_prec() can be used for
inserting parentheses where needed.
Own Id: OTP-12492

	Prevent zip:zip_open/[12] from leaking file descriptors if parent process
dies.
Own Id: OTP-12566

	Add a new random number generator, see rand module. It have better
characteristics and an improved interface.
Own Id: OTP-12586 Aux Id: OTP-12501, OTP-12502

	filename:split/1 when given an empty binary will now return an empty list,
to make it consistent with return value when given an empty list.
Own Id: OTP-12716

	Add sync option to ets:tab2file/3.
Own Id: OTP-12737 Aux Id: seq12805

	Add functions gb_sets:iterator_from() and gb_trees:iterator_from().
(Thanks to Kirill Kinduk.)
Own Id: OTP-12742

	Add maps:filter/2 to maps module.
Own Id: OTP-12745

	Change some internal data structures to Maps in order to speed up compilation
time. Measured speed up is around 10%-15%.
Own Id: OTP-12774

	Update orddict to use parameterized types and specs. (Thanks to UENISHI
Kota.)
Own Id: OTP-12785

	The assert macros in eunit has been moved out to
stdlib/include/assert.hrl. This files get included by eunit.hrl. Thus,
nothing changes for eunit users, but the asserts can now also be included
separately.
Own Id: OTP-12808

 STDLIB 2.4

 Fixed Bugs and Malfunctions

	Behaviour of character types \d, \w and \s has always been to not match
characters with value above 255, not 128, i.e. they are limited to ISO-Latin-1
and not ASCII
Own Id: OTP-12521

 Improvements and New Features

	c:m/1 now displays the module's MD5 sum.
Own Id: OTP-12500

	Make ets:i/1 handle binary input from IO server.
Own Id: OTP-12550

 STDLIB 2.3

 Fixed Bugs and Malfunctions

	The documentation of string:tokens/2 now explicitly specifies that adjacent
separator characters do not give any empty strings in the resulting list of
tokens.
Own Id: OTP-12036

	Fix broken deprecation warnings in ssh application
Own Id: OTP-12187

	Maps: Properly align union typed assoc values in documentation
Own Id: OTP-12190

	Fix filelib:wildcard/2 when 'Cwd' ends with a dot
Own Id: OTP-12212

	Allow Name/Arity syntax in maps values inside attributes.
Own Id: OTP-12213

	Fix edlin to correctly save text killed with ctrl-u. Prior to this fix,
entering text into the Erlang shell and then killing it with ctrl-u followed
by yanking it back with ctrl-y would result in the yanked text being the
reverse of the original killed text.
Own Id: OTP-12224

	If a callback function was terminated with exit/1, there would be no stack
trace in the ERROR REPORT produced by gen_server. This has been corrected.
To keep the backwards compatibility, the actual exit reason for the process is
not changed.
Own Id: OTP-12263 Aux Id: seq12733

	Warnings produced by ms_transform could point out the wrong line number.
Own Id: OTP-12264

 Improvements and New Features

	Supports tar file creation on other media than file systems mounted on the
local machine.
The erl_tar api is extended with erl_tar:init/3 that enables usage of user
provided media storage routines. A ssh-specific set of such routines is hidden
in the new function ssh_sftp:open_tar/3 to simplify creating a tar archive
on a remote ssh server.
A chunked file reading option is added to erl_tar:add/3,4 to save memory on
e.g small embedded systems. The size of the slices read from a file in that
case can be specified.
Own Id: OTP-12180 Aux Id: seq12715

	I/O requests are optimized for long message queues in the calling process.
Own Id: OTP-12315

 STDLIB 2.2

 Fixed Bugs and Malfunctions

	The type spec of the FormFunc argument to sys:handle_debug/4 was erroneously
pointing to dbg_fun(). This is now corrected and the new type is format_fun().
Own Id: OTP-11800

	Behaviors such as gen_fsm and gen_server should always invoke format_status/2
before printing the state to the logs.
Own Id: OTP-11967

	The documentation of dets:insert_new/2 has been corrected. (Thanks to Alexei
Sholik for reporting the bug.)
Own Id: OTP-12024

	Printing a term with io_lib:format and control sequence w, precision P and
field width F, where F< P would fail in one of the two following ways:
	If P < printed length of the term, an infinite loop would be entered,
consuming all available memory.

	If P >= printed length of the term, an exception would be raised.

These two problems are now corrected.
Own Id: OTP-12041

	The documentation of maps:values/1 has been corrected.
Own Id: OTP-12055

	Expand shell functions in map expressions.
Own Id: OTP-12063

 Improvements and New Features

	Add maps:with/2
Own Id: OTP-12137

 STDLIB 2.1.1

 Fixed Bugs and Malfunctions

	OTP-11850 fixed filelib:wildcard/1 to work with broken symlinks. This
correction, however, introduced problems since symlinks were no longer
followed for functions like filelib:ensure_dir/1, filelib:is_dir/1,
filelib:file_size/1, etc. This is now corrected.
Own Id: OTP-12054 Aux Id: seq12660

 STDLIB 2.1

 Fixed Bugs and Malfunctions

	filelib:wildcard("broken_symlink") would return an empty list if
"broken_symlink" was a symlink that did not point to an existing file.
Own Id: OTP-11850 Aux Id: seq12571

	erl_tar can now handle files names that contain Unicode characters. See
"UNICODE SUPPORT" in the documentation for erl_tar.
When creating a tar file, erl_tar would sometime write a too short end of
tape marker. GNU tar would correctly extract files from such tar file, but
would complain about "A lone zero block at...".
Own Id: OTP-11854

	When redefining and exporting the type map/0 the Erlang Code Linter
(erl_lint) erroneously emitted an error. This bug has been fixed.
Own Id: OTP-11872

	Fix evaluation of map updates in the debugger and erl_eval
Reported-by: José Valim
Own Id: OTP-11922

 Improvements and New Features

	The following native functions now bump an appropriate amount of reductions
and yield when out of reductions:
	erlang:binary_to_list/1
	erlang:binary_to_list/3
	erlang:bitstring_to_list/1
	erlang:list_to_binary/1
	erlang:iolist_to_binary/1
	erlang:list_to_bitstring/1
	binary:list_to_bin/1

Characteristics impact:
	Performance - The functions converting from lists got a performance loss
for very small lists, and a performance gain for very large lists.

	Priority - Previously a process executing one of these functions
effectively got an unfair priority boost. This priority boost depended on
the input size. The larger the input was, the larger the priority boost got.
This unfair priority boost is now lost.

Own Id: OTP-11888

	Add maps:get/3 to maps module. The function will return the supplied default
value if the key does not exist in the map.
Own Id: OTP-11951

 STDLIB 2.0

 Fixed Bugs and Malfunctions

	The option dupnames did not work as intended in re. When looking for names
with {capture, [Name, ...]}, re:run returned a random instance of the match
for that name, instead of the leftmost matching instance, which was what the
documentation stated. This is now corrected to adhere to the documentation.
The option {capture,all_names} along with a re:inspect/2 function is also
added to further help in using named subpatterns.
Own Id: OTP-11205

	If option 'binary' was set for standard_input, then c:i() would hang if the
output was more than one page long - i.e. then input after "(c)ontinue (q)uit
-->" could not be read. This has been corrected. (Thanks to José Valim)
Own Id: OTP-11589

	stdlib/lists: Add function droplast/1 This functions drops the last element of
a non-empty list. lists:last/1 and lists:droplast/1 are the dual of hd/1 and
tl/1 but for the end of a list. (Thanks to Hans Svensson)
Own Id: OTP-11677

	Allow all auto imports to be suppressed at once. Introducing the
no_auto_import attribute: -compile(no_auto_import). Useful for code generation
tools that always use the qualified function names and want to avoid the auto
imported functions clashing with local ones. (Thanks to José Valim.)
Own Id: OTP-11682

	supervisor_bridge does no longer report normal termination of children. The
reason is that in some cases, for instance when the restart strategy is
simple_one_for_one, the log could be completely overloaded with reports about
normally terminating processes. (Thanks to Artem Ocheredko)
Own Id: OTP-11685

	The type annotations for alternative registries using the {via, Module,
Name} syntax for sup_name() and sup_ref() in the supervisor module are now
consistent with the documentation. Dialyzer should no longer complain about
valid supervisor:start_link() and supervisor:start_child() calls. (Thanks to
Caleb Helbling.)
Own Id: OTP-11707

	Two Dets bugs have been fixed. When trying to open a short file that is not a
Dets file, the file was deleted even with just read access. Calling
dets:is_dets_file/1 with a file that is not a Dets file, a file descriptor
was left open. (Thanks to Håkan Mattsson for reporting the bugs.)
Own Id: OTP-11709

	Fix race bug in ets:all. Concurrent creation of tables could cause other
tables to not be included in the result. (Thanks to Florian Schintke for bug
report)
Own Id: OTP-11726

	erl_eval now properly evaluates '=='/2 when it is used in guards. (Thanks to
José Valim)
Own Id: OTP-11747

	Calls to proplists:get_value/3 are replaced by the faster lists:keyfind/3 in
io_lib_pretty. Elements in the list are always 2-tuples. (Thanks to Andrew
Thompson)
Own Id: OTP-11752

	A qlc bug where filters were erroneously optimized away has been fixed. Thanks
to Sam Bobroff for reporting the bug.
Own Id: OTP-11758

	A number of compiler errors where unusual or nonsensical code would crash the
compiler have been reported by Ulf Norell and corrected by Anthony Ramine.
Own Id: OTP-11770

	Since Erlang/OTP R16B the Erlang Core Linter (erl_lint) has not emitted
errors when built-in types were re-defined. This bug has been fixed. (Thanks
to Roberto Aloi.)
Own Id: OTP-11772

	The functions sys:get_state/1,2 and sys:replace_state/2,3 are fixed so
they can now be run while the process is sys suspended. To accomplish this,
the new callbacks Mod:system_get_state/1 and Mod:system_replace_state/2
are added, which are also implemented by the generic behaviours gen_server,
gen_event and gen_fsm.
The potential incompatibility refers to:
	The previous behaviour of intercepting the system message and passing a
tuple of size 2 as the last argument to sys:handle_system_msg/6 is no
longer supported.
	The error handling when StateFun in sys:replace_state/2,3 fails is
changed from being totally silent to possibly (if the callback module does
not catch) throw an exception in the client process.

(Thanks to James Fish and Steve Vinoski)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11817

 Improvements and New Features

	Options to set match_limit and match_limit_recursion are added to re:run. The
option report_errors is also added to get more information when re:run fails
due to limits or compilation errors.
Own Id: OTP-10285

	The pre-defined types array/0, dict/0, digraph/0, gb_set/0,
gb_tree/0, queue/0, set/0, and tid/0 have been deprecated. They will
be removed in Erlang/OTP 18.0.
Instead the types array:array/0,
dict:dict/0, digraph:graph/0,
gb_set:set/0, gb_tree:tree/0, queue:queue/0,
sets:set/0, and ets:tid/0 can be used.
(Note: it has always been necessary to use ets:tid/0.)
It is allowed in Erlang/OTP 17.0 to locally re-define the types array/0,
dict/0, and so on.
New types array:array/1,
dict:dict/2, gb_sets:set/1,
gb_trees:tree/2,
queue:queue/1, and sets:set/1 have
been added.
A compiler option, nowarn_deprecated_type, has been introduced. By including
the attribute
-compile(nowarn_deprecated_type).
in an Erlang source file, warnings about deprecated types can be avoided in
Erlang/OTP 17.0.
The option can also be given as a compiler flag:
erlc +nowarn_deprecated_type file.erl
Own Id: OTP-10342

	Calls to erlang:open_port/2 with 'spawn' are updated to handle space in the
command path.
Own Id: OTP-10842

	Dialyzer's unmatched_return warnings have been corrected.
Own Id: OTP-10908

	Forbid unsized fields in patterns of binary generators and simplified
v3_core's translation of bit string generators. (Thanks to Anthony Ramine.)
Own Id: OTP-11186

	The version of the PCRE library Used by Erlang's re module is raised to 8.33
from 7.6. This means, among other things, better Unicode and Unicode Character
Properties support. New options connected to PCRE 8.33 are also added to the
re module (ucd, notempty_atstart, no_start_optimize). PCRE has extended the
regular expression syntax between 7.6 and 8.33, why this imposes a potential
incompatibility. Only very complicated regular expressions may be affected,
but if you know you are using obscure features, please test run your regular
expressions and verify that their behavior has not changed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11204

	Added dict:is_empty/1 and orddict:is_empty/1. (Thanks to Magnus Henoch.)
Own Id: OTP-11353

	A call to either the garbage_collect/1 BIF or the
check_process_code/2 BIF may trigger garbage
collection of another processes than the process calling the BIF. The previous
implementations performed these kinds of garbage collections without
considering the internal state of the process being garbage collected. In
order to be able to more easily and more efficiently implement yielding native
code, these types of garbage collections have been rewritten. A garbage
collection like this is now triggered by an asynchronous request signal, the
actual garbage collection is performed by the process being garbage collected
itself, and finalized by a reply signal to the process issuing the request.
Using this approach processes can disable garbage collection and yield without
having to set up the heap in a state that can be garbage collected.
The garbage_collect/2, and
check_process_code/3 BIFs have been
introduced. Both taking an option list as last argument. Using these, one can
issue asynchronous requests.
code:purge/1 and code:soft_purge/1 have been rewritten to utilize
asynchronous check_process_code requests in order to parallelize work.
Characteristics impact: A call to the
garbage_collect/1 BIF or the
check_process_code/2 BIF will normally take longer
time to complete while the system as a whole wont be as much negatively
effected by the operation as before. A call to code:purge/1 and
code:soft_purge/1 may complete faster or slower depending on the state of
the system while the system as a whole wont be as much negatively effected by
the operation as before.
Own Id: OTP-11388 Aux Id: OTP-11535, OTP-11648

	Improve the documentation of the supervisor's via reference. (Thanks to
MaximMinin.)
Own Id: OTP-11399

	orddict:from_list/1 now uses the optimized sort routines in the lists
module instead of (essentially) an insertion sort. Depending on the input
data, the speed of the new from_list/1 is anything from slightly faster up
to several orders of magnitude faster than the old from_list/1.
(Thanks to Steve Vinoski.)
Own Id: OTP-11552

	EEP43: New data type - Maps
With Maps you may for instance:
	____ - M0 = #{ a => 1, b => 2}, % create associations

	____ - M1 = M0#{ a := 10 }, % update values

	____ - M2 = M1#{ "hi" => "hello"}, % add new associations

	____ - #{ "hi" := V1, a := V2, b := V3} = M2. % match keys with values

For information on how to use Maps please see Map Expressions in the
Reference Manual.
The current implementation is without the following features:
	____ - No variable keys

	____ - No single value access

	____ - No map comprehensions

Note that Maps is experimental during OTP 17.0.
Own Id: OTP-11616

	When tab completing the erlang shell now expands zero-arity functions all the
way to closing parenthesis, unless there is another function with the same
name and a different arity. (Thanks to Pierre Fenoll.)
Own Id: OTP-11684

	The Erlang Code Preprocessor (epp) could loop when encountering a circular
macro definition in an included file. This bug has been fixed.
Thanks to Maruthavanan Subbarayan for reporting the bug, and to Richard
Carlsson for providing a bug fix.
Own Id: OTP-11728

	The Erlang Code Linter (erl_lint) has since Erlang/OTP R13B emitted warnings
whenever any of the types arity/0, bitstring/0, iodata/0, or
boolean/0 were re-defined. Now errors are emitted instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11771

	The encoding option of erl_parse:abstract/2 has been extended to include
none and a callback function (a predicate).
Own Id: OTP-11807

	Export zip option types to allow referal from other modules.
Thanks to Pierre Fenoll and Håkan Mattson
Own Id: OTP-11828

	The module pg has been deprecated and will be removed in Erlang/OTP 18.
Own Id: OTP-11840

 STDLIB 1.19.4

 Fixed Bugs and Malfunctions

	Fix typo in gen_server.erl. Thanks to Brian L. Troutwine.
Own Id: OTP-11398

	Spec for atan2 should be atan2(Y, X), not atan2(X, Y). Thanks to Ary
Borenszweig.
Own Id: OTP-11465

 Improvements and New Features

	Add XML marker for regexp syntax. Thanks to Håkan Mattson.
Own Id: OTP-11442

 STDLIB 1.19.3

 Fixed Bugs and Malfunctions

	The functions dets:foldl/3, dets:foldr/3, and dets:traverse/2 did not
release the table after having traversed the table to the end. The bug was
introduced in R16B. (Thanks to Manuel Duran Aguete.)
Own Id: OTP-11245

	If the fun M:F/A construct was used erroneously the linter could crash.
(Thanks to Mikhail Sobolev.)
Own Id: OTP-11254

	The specifications of io_lib:fread/2,3 have been corrected. (Thanks to Chris
King and Kostis Sagonas for pinpointing the bug.)
Own Id: OTP-11261

 Improvements and New Features

	Fixed type typo in gen_server.
Own Id: OTP-11200

	Update type specs in filelib and io_prompt. Thanks to Jose Valim.
Own Id: OTP-11208

	Fix typo in abcast() function comment. Thanks to Johannes Weissl.
Own Id: OTP-11219

	Make edlin understand a few important control keys. Thanks to Stefan
Zegenhagen.
Own Id: OTP-11251

	Export the edge/0 type from the digraph module. Thanks to Alex Ronne Petersen.
Own Id: OTP-11266

	Fix variable usage tracking in erl_lint and fixed unsafe variable tracking in
try expressions. Thanks to Anthony Ramine.
Own Id: OTP-11268

 STDLIB 1.19.2

 Fixed Bugs and Malfunctions

	The Erlang scanner no longer accepts floating point numbers in the input
string.
Own Id: OTP-10990

	When converting a faulty binary to a list with unicode:characters_to_list, the
error return value could contain a faulty "rest", i.e. the io_list of
characters that could not be converted was wrong. This happened only if input
was a sub binary and conversion was from utf8. This is now corrected.
Own Id: OTP-11080

	The type hook_function() has been corrected in erl_pp, the Erlang Pretty
Printer.
The printing of invalid forms, e.g. record field types, has also been fixed.
It has been broken since R16B.
(Thanks to Tomáš Janoušek.)
Own Id: OTP-11100

	Fix receive support in erl_eval with a BEAM module. Thanks to Anthony Ramine.
Own Id: OTP-11137

 Improvements and New Features

	Delete obsolete note about simple-one-for-one supervisor. Thanks to Magnus
Henoch.
Own Id: OTP-10938

	When selecting encoding of a script written in Erlang (escript) the optional
directive on the second line is now recognized.
Own Id: OTP-10951

	The function erl_parse:abstract/2 has been documented.
Own Id: OTP-10992

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Added sys:get_state/1,2 and sys:replace_state/2,3. Thanks to Steve Vinoski.
Own Id: OTP-11013

	Optimizations to gen mechanism. Thanks to Loïc Hoguin.
Own Id: OTP-11025

	Optimizations to gen.erl. Thanks to Loïc Hoguin.
Own Id: OTP-11035

	Use erlang:demonitor(Ref, [flush]) where applicable. Thanks to Loïc Hoguin.
Own Id: OTP-11039

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

	Fix rest_for_one and one_for_all restarting a child not terminated. Thanks to
James Fish.
Own Id: OTP-11042

	Fix excessive CPU consumption of timer_server. Thanks to Aliaksey
Kandratsenka.
Own Id: OTP-11053

	Rename and document lists:zf/2 as lists:filtermap/2. Thanks to Anthony Ramine.
Own Id: OTP-11078

	Fixed an inconsistent state in epp. Thanks to Anthony Ramine
Own Id: OTP-11079

	c:ls(File) will now print File, similar to ls(1) in Unix. The error messages
have also been improved. (Thanks to Bengt Kleberg.)
Own Id: OTP-11108

	Support callback attributes in erl_pp. Thanks to Anthony Ramine.
Own Id: OTP-11140

	Improve erl_lint performance. Thanks to José Valim.
Own Id: OTP-11143

 STDLIB 1.19.1

 Fixed Bugs and Malfunctions

	Bugs related to Unicode have been fixed in the erl_eval module.
Own Id: OTP-10622 Aux Id: kunagi-351 [262]

	filelib:wildcard("some/relative/path/*.beam", Path) would fail to match any
file. That is, filelib:wildcard/2 would not work if the first component of the
pattern did not contain any wildcard characters. (A previous attempt to fix
the problem in R15B02 seems to have made matters worse.)
(Thanks to Samuel Rivas and Tuncer Ayaz.)
There is also an incompatible change to the Path argument. It is no longer
allowed to be a binary.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10812

 Improvements and New Features

	The new STDLIB application variable shell_strings can be used for
determining how the Erlang shell outputs lists of integers. The new function
shell:strings/1 toggles the value of the variable.
The control sequence modifier l can be used for turning off the string
recognition of ~p and ~P.
Own Id: OTP-10755

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

	Extend ~ts to handle binaries with characters coded in ISO-latin-1
Own Id: OTP-10836

	The +pc flag to erl can be used to set the range of characters considered
printable. This affects how the shell and io:format("~tp",...) functionality
does heuristic string detection. More can be read in STDLIB users guide.
Own Id: OTP-10884

 STDLIB 1.19

 Fixed Bugs and Malfunctions

	Wildcards such as "some/path/*" passed to filelib:wildcard/2 would fail to
match any file. (Thanks to Samuel Rivas for reporting this bug.)
Own Id: OTP-6874 Aux Id: kunagi-190 [101]

	Fixed error handling in proc_lib:start which could hang if the spawned process
died in init.
Own Id: OTP-9803 Aux Id: kunagi-209 [120]

	Allow ** in filelib:wildcard
Two adjacent * used as a single pattern will match all files and zero or more
directories and subdirectories. (Thanks to José Valim)
Own Id: OTP-10431

	Add the \gN and \g{N} syntax for back references in re:replace/3,4 to
allow use with numeric replacement strings. (Thanks to Vance Shipley)
Own Id: OTP-10455

	Export ets:match_pattern/0 type (Thanks to Joseph Wayne Norton)
Own Id: OTP-10472

	Fix printing the empty binary at depth 1 with ~W (Thanks to Andrew Thompson)
Own Id: OTP-10504

	The type ascii_string() in the base64 module has been corrected. The type
file:file_info() has been cleaned up. The type
file:fd() has been made opaque in the documentation.
Own Id: OTP-10624 Aux Id: kunagi-352 [263]

 Improvements and New Features

	Dets tables are no longer fixed while traversing with a bound key (when only
the objects with the right key are matched). This optimization affects the
functions match/2, match_object/2, select/2, match_delete/2, and
select_delete/2.
Own Id: OTP-10097

	Support for Unicode has been implemented.
Own Id: OTP-10302

	The linter now warns for opaque types that are not exported, as well as for
under-specified opaque types.
Own Id: OTP-10436

	The type file:name() has been substituted for the type
file:filename() in the following functions in the
filename module: absname/2, absname_join/2, join/1,2, and split/1.
Own Id: OTP-10474

	If a child process fails in its start function, then the error reason was
earlier only reported as an error report from the error_handler, and
supervisor:start_link would only return {error,shutdown}. This has been
changed so the supervisor will now return {error,{shutdown,Reason}}, where
Reason identifies the failing child and its error reason. (Thanks to Tomas
Pihl)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10490

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	The contracts and types of the modules erl_scan and sys have been
corrected and improved. (Thanks to Kostis Sagonas.)
Own Id: OTP-10658

	The Erlang shell now skips the rest of the line when it encounters an Erlang
scanner error.
Own Id: OTP-10659

	Clean up some specs in the proplists module. (Thanks to Kostis Sagonas.)
Own Id: OTP-10663

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Enable escript to accept emulator arguments when script file has no shebang.
Thanks to Magnus Henoch
Own Id: OTP-10691

	Fix bug in queue:out/1, queue:out_r/1 that makes it O(N^2) in worst case.
Thanks to Aleksandr Erofeev.
Own Id: OTP-10722

	There are new functions in the epp module which read the character encoding
from files. See epp for more information.
Own Id: OTP-10742 Aux Id: OTP-10302

	The functions in io_lib have been adjusted for Unicode. The existing
functions write_string() and so on now take Unicode strings, while the old
behavior has been taken over by new functions write_latin1_string() and so
on. There are also new functions to write Unicode strings as Latin-1 strings,
mainly targetted towards the Erlang pretty printer (erl_pp).
Own Id: OTP-10745 Aux Id: OTP-10302

	The new functions proc_lib:format/2 and erl_parse:abstract/2 accept an
encoding as second argument.
Own Id: OTP-10749 Aux Id: OTP-10302

	Increased potential concurrency in ETS for write_concurrency option. The
number of internal table locks has increased from 16 to 64. This makes it four
times less likely that two concurrent processes writing to the same table
would collide and thereby serialized. The cost is an increased constant memory
footprint for tables using write_concurrency. The memory consumption per
inserted record is not affected. The increased footprint can be particularly
large if write_concurrency is combined with read_concurrency.
Own Id: OTP-10787

 STDLIB 1.18.3

 Fixed Bugs and Malfunctions

	Minor test updates
Own Id: OTP-10591

 STDLIB 1.18.2

 Fixed Bugs and Malfunctions

	Fixed bug where if given an invalid drive letter on windows ensure dir would
go into an infinite loop.
Own Id: OTP-10104

	Calls to gen_server:enter_loop/4 where ServerName has a global scope and no
timeout is given now works correctly.
Thanks to Sam Bobroff for reporting the issue.
Own Id: OTP-10130

	fix escript/primary archive reloading
If the mtime of an escript/primary archive file changes after being added to
the code path, correctly reload the archive and update the cache. (Thanks to
Tuncer Ayaz)
Own Id: OTP-10151

	Fix bug that in some cases could cause corrupted binaries in ETS tables with
compressed option.
Own Id: OTP-10182

	Fix filename:nativename/1 on Win32
Don't choke on paths given as binary argument on Win32. Thanks to Jan Klötzke
Own Id: OTP-10188

	Fix bug in ets:test_ms/2 that could cause emulator crash when using '$_'
in match spec.
Own Id: OTP-10190

	Fix bug where zip archives wrongly have a first disk number set to 1
Own Id: OTP-10223

 Improvements and New Features

	The message printed by the Erlang shell as an explanation of the badarith
error has been corrected. (Thanks to Matthias Lang.)
Own Id: OTP-10054

 STDLIB 1.18.1

 Fixed Bugs and Malfunctions

	References to is_constant/1 (which was removed in the R12 release) has been
removed from documentation and code.
Own Id: OTP-6454 Aux Id: seq10407

	Leave control back to gen_server during supervisor's restart loop
When an attempt to restart a child failed, supervisor would earlier keep the
execution flow and try to restart the child over and over again until it
either succeeded or the restart frequency limit was reached. If none of these
happened, supervisor would hang forever in this loop.
This commit adds a timer of 0 ms where the control is left back to the
gen_server which implements the supervisor. This way any incoming request to
the supervisor will be handled - which could help breaking the infinite loop -
e.g. shutdown request for the supervisor or for the problematic child.
This introduces some incompatibilities in stdlib due to new return values from
supervisor:
	restart_child/2 can now return {error,restarting}
	delete_child/2 can now return {error,restarting}
	which_children/1 returns a list of {Id,Child,Type,Mods}, where Child, in
addition to the old pid() or 'undefined', now also can be 'restarting'.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9549

	If a temporary child's start function returned 'ignore', then the supervisor
would keep it's child specification. This has been corrected. Child
specifications for non-existing temporary children shall never be kept.
Own Id: OTP-9782 Aux Id: seq11964

	Use universal time as base in error logger
Previous conversion used the deprecated
calendar:local_time_to_universal_time/1
Own Id: OTP-9854

	Calling a guard test (such as is_list/1) from the top-level in a guard, would
cause a compiler crash if there was a local definition with the same name.
Corrected to reject the program with an error message.
Own Id: OTP-9866

	Fix the type spec from the doc of binary:part/3 (Thanks to Ricardo Catalinas
Jiménez)
Own Id: OTP-9920

	Correct spelling of registered (Thanks to Richard Carlsson)
Own Id: OTP-9925

	Put gb_trees documentation into alphabetical order (Thanks to Aidan Hobson
Sayers)
Own Id: OTP-9929

	Fix bug in ETS with compressed option and insertion of term containing large
integers (>2G) on 64-bit machines. Seen to cause emulator crash. (Thanks to
Diego Llarrull for excellent bug report)
Own Id: OTP-9932

	Add plugin support for alternative name lookup This patch introduces a new way
of locating a behaviour instance: {via, Module, Name}. (Thanks to Ulf Wiger)
Own Id: OTP-9945

	The function digraph_utils:condensation/1 used to create a digraph
containing loops contradicting the documentation which states that the created
digraph is free of cycles. This bug has been fixed. (Thanks to Kostis Sagonas
for finding the bug.)
Own Id: OTP-9953

	When an escript ends now all printout to standard output and standard error
gets out on the terminal. This bug has been corrected by changing the
behaviour of erlang:halt/0,1, which should fix the same problem for other
escript-like applications, i.e that data stored in the output port driver
buffers got lost when printing on a TTY and exiting through erlang:halt/0,1.
The BIF:s erlang:halt/0,1 has gotten improved semantics and there is a new BIF
erlang:halt/2 to accomplish something like the old semantics. See the
documentation.
Now erlang:halt/0 and erlang:halt/1 with an integer argument will close all
ports and allow all pending async threads operations to finish before exiting
the emulator. Previously erlang:halt/0 and erlang:halt(0) would just wait for
pending async threads operations but not close ports. And erlang:halt/1 with a
non-zero integer argument would not even wait for pending async threads
operations.
To roughly the old behaviour, to not wait for ports and async threads
operations when you exit the emulator, you use erlang:halt/2 with an integer
first argument and an option list containing {flush,false} as the second
argument. Note that now is flushing not dependant of the exit code, and you
cannot only flush async threads operations which we deemed as a strange
behaviour anyway.
Also, erlang:halt/1,2 has gotten a new feature: If the first argument is the
atom 'abort' the emulator is aborted producing a core dump, if the operating
system so allows.
Own Id: OTP-9985

	Add escript win32 alternative invocation. escript can now be started as both
"escript.exe" and "escript" (Thanks to Pierre Rouleau)
Own Id: OTP-9997

 STDLIB 1.18

 Fixed Bugs and Malfunctions

	Improved algorithm in module random. Avoid seed values that are even
divisors of the primes and by that prevent getting sub-seeds that are stuck on
zero. Worst case was random:seed(0,0,0) that produced a series of only zeros.
This is an incompatible change in the sense that applications that relies on
reproducing a specific series for a given seed will fail. The pseudo random
output is still deterministic but different compared to earlier versions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8713

	Calls to global:whereis_name/1 have been substituted for calls to
global:safe_whereis_name/1 since the latter is not safe at all.
The reason for not doing this earlier is that setting a global lock masked out
a bug concerning the restart of supervised children. The bug has now been
fixed by a modification of global:whereis_name/1. (Thanks to Ulf Wiger for
code contribution.)
A minor race conditions in gen_fsm:start* has been fixed: if one of these
functions returned {error, Reason} or ignore, the name could still be
registered (either locally or in global. (This is the same modification as
was done for gen_server in OTP-7669.)
The undocumented function global:safe_whereis_name/1 has been removed.
Own Id: OTP-9212 Aux Id: seq7117, OTP-4174

	If a child of a supervisor terminates with reason {shutdown,Term} it is now
handled by the supervisor as if the reason was 'shutdown'.
For children with restart type 'permanent', this implies no change. For
children with restart type 'transient', the child will no longer be restarted
and no supervisor report will be written. For children with restart type
'temporary', no supervisor report will be written.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9222

	Minor improvement of documentation regarding supervisor restart strategy for
temporary and transient child processes.
Own Id: OTP-9381

	A Dets table with sufficiently large buckets could not always be repaired.
This bug has been fixed.
The format of Dets files has been modified. When downgrading tables created
with the new system will be repaired. Otherwise the modification should not be
noticeable.
Own Id: OTP-9607

	A few contracts in the lists module have been corrected.
Own Id: OTP-9616

	Add '-callback' attributes in stdlib's behaviours
Replace the behaviour_info(callbacks) export in stdlib's behaviours with
-callback' attributes for all the callbacks. Update the documentation with
information on the callback attribute Automatically generate 'behaviour_info'
function from '-callback' attributes
'behaviour_info(callbacks)' is a special function that is defined in a module
which describes a behaviour and returns a list of its callbacks.
This function is now automatically generated using the '-callback' specs. An
error is returned by lint if user defines both '-callback' attributes and the
behaviour_info/1 function. If no type info is needed for a callback use a
generic spec for it. Add '-callback' attribute to language syntax
Behaviours may define specs for their callbacks using the familiar spec
syntax, replacing the '-spec' keyword with '-callback'. Simple lint checks are
performed to ensure that no callbacks are defined twice and all types referred
are declared.
These attributes can be then used by tools to provide documentation to the
behaviour or find discrepancies in the callback definitions in the callback
module.
Add callback specs into 'application' module in kernel Add callback specs to
tftp module following internet documentation Add callback specs to
inets_service module following possibly deprecated comments
Own Id: OTP-9621

	If a Dets table had been properly closed but the space management data could
not been read, it was not possible to repair the file. This bug has been
fixed.
Own Id: OTP-9622

	The Unicode noncharacter code points 16#FFFE and 16#FFFE were not allowed to
be encoded or decoded using the unicode module or bit syntax. That was
inconsistent with the other noncharacters 16#FDD0 to 16#FDEF that could be
encoded/decoded. To resolve the inconsistency, 16#FFFE and 16#FFFE can now be
encoded and decoded. (Thanks to Alisdair Sullivan.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9624

	Make epp search directory of current file first when including another file
This completes a partial fix in R11 that only worked for include_lib().
(Thanks to Richard Carlsson)
Own Id: OTP-9645

	ms_transform: Fix incorrect `variable shadowed' warnings
This patch removes incorrect passing of variable bindings from one function
clause to another. (Thanks to Haitao Li)
Own Id: OTP-9646

	Explicitly kill dynamic children in supervisors
According to the supervisor's documentation: "Important note on
simple-one-for-one supervisors: The dynamically created child processes of a
simple-one-for-one supervisor are not explicitly killed, regardless of
shutdown strategy, but are expected to terminate when the supervisor does
(that is, when an exit signal from the parent process is received)."
All is fine as long as we stop simple_one_for_one supervisor manually. Dynamic
children catch the exit signal from the supervisor and leave. But, if this
happens when we stop an application, after the top supervisor has stopped, the
application master kills all remaining processes associated to this
application. So, dynamic children that trap exit signals can be killed during
their cleanup (here we mean inside terminate/2). This is unpredictable and
highly time-dependent.
In this commit, supervisor module is patched to explicitly terminate dynamic
children accordingly to the shutdown strategy.
NOTE: Order in which dynamic children are stopped is not defined. In fact,
this is "almost" done at the same time.
Stack errors when dynamic children are stopped
Because a simple_one_for_one supervisor can have many workers, we stack errors
during its shutdown to report only one message for each encountered error
type. Instead of reporting the child's pid, we use the number of concerned
children. (Thanks to Christopher Faulet)
Own Id: OTP-9647

	Allow an infinite timeout to shutdown worker processes
Now, in child specification, the shutdown value can also be set to infinity
for worker children. This restriction was removed because this is not always
possible to predict the shutdown time for a worker. This is highly
application-dependent. Add a warning to docs about workers' shutdown strategy
(Thanks to Christopher Faulet)
Own Id: OTP-9648

	A badarg would sometimes occur in supervisor when printing error reports and
the child pid was undefined. This has been corrected.
Own Id: OTP-9669

	Fix re:split spec not to accept option 'global'(Thanks to Shunichi Shinohara)
Own Id: OTP-9691

 Improvements and New Features

	Fix a few tests that used to fail on the HiPE platform.
Own Id: OTP-9637

	Variables are now now allowed in 'fun M:F/A' as suggested by Richard O'Keefe
in EEP-23.
The representation of 'fun M:F/A' in the abstract format has been changed in
an incompatible way. Tools that directly read or manipulate the abstract
format (such as parse transforms) may need to be updated. The compiler can
handle both the new and the old format (i.e. extracting the abstract format
from a pre-R15 BEAM file and compiling it using compile:forms/1,2 will work).
The syntax_tools application can also handle both formats.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9643

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

	The deprecated 'regexp' module has been removed. Use the 're' module
instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9737

	filename:find_src/1,2 will now work on stripped BEAM files (reported by Per
Hedeland). The HiPE compiler will also work on stripped BEAM files. The BEAM
compiler will no longer include compilation options given in the source code
itself in M:module_info(compile) (because those options will be applied
anyway if the module is re-compiled).
Own Id: OTP-9752

 STDLIB 1.17.5

 Fixed Bugs and Malfunctions

	erl_tar:extract failed when executed inside a directory with some parent
directory to which the user has no read access. This has been corrected.
Own Id: OTP-9368

	A bug in erl_scan:set_attribute/3 has been fixed.
Own Id: OTP-9412

	The contract of io_lib:fread() has been corrected.
Own Id: OTP-9413 Aux Id: seq11873

	A crash in iolib:fread/2 when end of input data was encountered while trying
to match literal characters, which should return {more,,,} but instead
crashed, has been corrected. Reported by Klas Johansson.
A similar peculiarity for io:fread when encountering end of file before any
field data has also been corrected.
Own Id: OTP-9439

	The contract of timer:now_diff() has been corrected. (Thanks to Alex
Morarash).
Own Id: OTP-9450

	Fix minor typo in gen_fsm documentation (Thanks to Haitao Li)
Own Id: OTP-9456

	The contracts of zip:zip_list_dir/1 and zip:zip_get/2 have been corrected.
Own Id: OTP-9471 Aux Id: seq11887, OTP-9472

	A bug in zip:zip_open() has been fixed.
Own Id: OTP-9472 Aux Id: seq11887, OTP-9471

	Fix trivial documentation errors(Thanks to Matthias Lang)
Own Id: OTP-9498

	Add a proplist() type
Recently I was adding specs to an API and found that there is no canonical
proplist() type defined. (Thanks to Ryan Zezeski)
Own Id: OTP-9499

	fix supervisors restarting temporary children
In the current implementation of supervisors, temporary children should never
be restarted. However, when a temporary child is restarted as part of a
one_for_all or rest_for_one strategy where the failing process is not the
temporary child, the supervisor still tries to restart it.
Because the supervisor doesn't keep some of the MFA information of temporary
children, this causes the supervisor to hit its restart limit and crash.
This patch fixes the behaviour by inserting a clause in terminate_children/2-3
(private function) that will omit temporary children when building a list of
killed processes, to avoid having the supervisor trying to restart them again.
Only supervisors in need of restarting children used the list, so the change
should be of no impact for the functions that called terminate_children/2-3
only to kill all children.
The documentation has been modified to make this behaviour more explicit.
(Thanks to Fred Hebert)
Own Id: OTP-9502

	fix broken edoc annotations (Thanks to Richard Carlsson)
Own Id: OTP-9516

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

	Handle rare race in the crypto key server functionality
Own Id: OTP-9586

 Improvements and New Features

	Types and specifications have been added.
Own Id: OTP-9356

	The contracts of the queue module have been modified.
Own Id: OTP-9418

	Contracts in STDLIB and Kernel have been improved and type errors have been
corrected.
Own Id: OTP-9485

	Types for several BIFs have been extended/corrected. Also the types for types
for lists:keyfind/3, lists:keysearch/3, and lists:keyemember/3 have been
corrected. The incorrect/incomplete types could cause false dialyzer warnings.
Own Id: OTP-9496

 STDLIB 1.17.4

 Fixed Bugs and Malfunctions

	The default value undefined was added to records field types in such a way
that the result was not always a well-formed type. This bug has been fixed.
Own Id: OTP-9147

	Update index file atomically
Since the log_mf_h index file might be read by other processes than the error
handler (e.g. by the rb tool), this file should be updated atomically. This
will avoid hitting the time gap between opening the file in write mode (and
thus emptying the file) and the actual update with the new contents. To do
this, a temporary file is written, and the file:rename/1 used to replace the
real index file.
Own Id: OTP-9148

	Fixed various typos across the documentation (Thanks to Tuncer Ayaz)
Own Id: OTP-9154

	Supervisors should not save child-specs for temporary processes when they
terminate as they should not be restarted. Saving the temporary child spec
will result in that you cannot start a new temporary process with the same
child spec as an already terminated temporary process. Since R14B02 you cannot
restart a temporary temporary process as arguments are no longer saved, it has
however always been semantically incorrect to restart a temporary process.
Thanks to Filipe David Manana for reporting this and suggesting a solution.
Own Id: OTP-9167 Aux Id: OTP-9064

	Various small documentation fixes (Thanks to Bernard Duggan)
Own Id: OTP-9172

	Fix format_status bug for unregistered gen_event processes
Port the gen_fsm code for format_status to gen_event in order to prevent a
lists:concat([...,pid()]) crash when calling sys:get_status/1 on an
unregistered gen_event process.
Refactor formatstatus header code from gen* behaviours to module gen.
Extend the format_status tests in gen_event_SUITE to cover format_status bugs
with anonymous gen_event processes. (Thanks To Geoff Cant)
Own Id: OTP-9218

	List of pids changed to 'set' in supervisor for dynamic temporary children.
Accessing the list would not scale well when adding/deleting many children.
(Thanks to Evgeniy Khramtsov)
Own Id: OTP-9242

	Change pool module to attempt to attach to nodes that are already running
The pool module prints out an error message and takes no further action for
nodes that are already running. This patch changes that behavior so that if
the return from slave:start/3 is {already_running, Node} then an attempt to
attach to the node is still made. This makes sense because the node has been
specified by the user in the .hosts.erlang file indicating a wish for the node
to be part of the pool and a manual attach can be successfully made after the
pool is started.(Thanks to Kelly McLaughlin)
Own Id: OTP-9244

	unicode: document 16#FFFE and 16#FFFF (non chars)(Thanks to Tuncer Ayaz)
Own Id: OTP-9256

	re: remove gratuitous "it " in manpage (Thanks to Tuncer Ayaz)
Own Id: OTP-9307

	A bug in erl_eval(3) has been fixed.
Own Id: OTP-9322

 Improvements and New Features

	Add timer:tc/1 and remove the catch in tc/2 and tc/3. The time measuring
functions will thus no longer trap exits, errors or throws caused by the
measured function.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9169

	Allow supervisor:terminate_child(SupRef,Pid) for simple_one_for_one
supervisors
supervisor:terminate_child/2 was earlier not allowed if the supervisor used
restart strategy simple_one_for_one. This is now changed so that children of
this type of supervisors can be terminated by specifying the child's Pid.
(Thanks to Vance Shipley.)
Own Id: OTP-9201

	Types and specifications have been added.
Own Id: OTP-9267

	Erlang types and specifications are used for documentation.
Own Id: OTP-9271

	Allow Dets tablenames to be arbitrary terms.
Own Id: OTP-9282

	A specification that could cause problems for Dialyzer has been fixed. An
opaque type in erl_eval has been turned in to a ordinary type. This is a
temporary fix.
Own Id: OTP-9333

 STDLIB 1.17.3

 Fixed Bugs and Malfunctions

	Two bugs in io:format for ~F.~Ps has been corrected. When length(S) >=
abs(F) > P, the precision P was incorrectly ignored. When F == P > length(S)
the result was incorrectly left adjusted. Bug found by Ali Yakout who also
provided a fix.
Own Id: OTP-8989 Aux Id: seq11741

	Fix exception generation in the io module
Some functions did not generate correct badarg exception on a badarg
exception.
Own Id: OTP-9045

	Fixes to the dict and orddict module documentation
Fixed grammar and one inconsistency (Key - Value instead of key/value, since
everywhere else the former is used). (thanks to Filipe David Manana)
Own Id: OTP-9083

	Add ISO week number calculation functions to the calendar module in stdlib
This new feature adds the missing week number function to the calendar module
of the stdlib application. The implementation conforms to the ISO 8601
standard. The new feature has been implemented tested and documented (thanks
to Imre Horvath).
Own Id: OTP-9087

 Improvements and New Features

	Implement the 'MAY' clauses from RFC4648 regarding the pad character to make
mime_decode() and mime_decode_to_string() functions more tolerant of badly
padded base64. The RFC is quoted below for easy reference.
"RFC4648 Section 3.3 with reference to MIME decoding: Furthermore, such
specifications MAY ignore the pad character, "=", treating it as non-alphabet
data, if it is present before the end of the encoded data. If more than the
allowed number of pad characters is found at the end of the string (e.g., a
base 64 string terminated with "==="), the excess pad characters MAY also be
ignored."
Own Id: OTP-9020

	Supervisors will no longer save start parameters for temporary processes as
they will not be restarted. In the case of simple_one_for_one workers such as
ssl-connection processes this will substantial reduce the memory footprint of
the supervisor.
Own Id: OTP-9064

	When running escript it is now possible to add the -n flag and the escript
will be compiled using +native.
Own Id: OTP-9076

 STDLIB 1.17.2.1

 Fixed Bugs and Malfunctions

	Several type specifications for standard libraries were wrong in the R14B01
release. This is now corrected. The corrections concern types in
re,io,filename and the module erlang itself.
Own Id: OTP-9008

 STDLIB 1.17.2

 Fixed Bugs and Malfunctions

	When several clients accessed a Dets table simultaneously, one of them calling
dets:insert_new/2, the Dets server could crash. Alternatively, under the
same conditions, ok was sometimes returned instead of true. (Thanks to
John Hughes.)
Own Id: OTP-8856

	When several clients accessed a Dets table simultaneously, inserted or updated
objects were sometimes lost due to the Dets file being truncated. (Thanks to
John Hughes.)
Own Id: OTP-8898

	When several clients accessed a Dets table simultaneously, modifications of
the Dets server's internal state were sometimes thrown away. The symptoms are
diverse: error with reason bad_object; inserted objects not returned by
lookup(); et cetera. (Thanks to John Hughes.)
Own Id: OTP-8899

	If a Dets table was closed after calling bchunk/2, match/1,3,
match_object/1,3, or select/1,3 and then opened again, a subsequent call
using the returned continuation would normally return a reply. This bug has
fixed; now the call fails with reason badarg.
Own Id: OTP-8903

	Cover did not collect coverage data for files such as Yecc parses containing
include directives. The bug has been fixed by modifying epp, the Erlang Code
Preprocessor.
Own Id: OTP-8911

	If a Dets table with fewer slots than keys was opened and then closed after
just a lookup, the contents were no longer well-formed. This bug has been
fixed. (Thanks to Matthew Evans.)
Own Id: OTP-8923

	In a supervisor, when it terminates a child, if that child happens to have
exited fractionally early, with normal, the supervisor reports this as an
error. This should not be reported as an error.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8938 Aux Id: seq11615

 Improvements and New Features

	The documentation filelib:wildcard/1,2 now describes the character set syntax
for wildcards.
Own Id: OTP-8879 Aux Id: seq11683

	Buffer overflows have been prevented in erlc, dialyzer, typer,
run_test, heart, escript, and erlexec.
(Thanks to Michael Santos.)
Own Id: OTP-8892

	Using a float for the number of copies for string:copies/2 resulted in an
infinite loop. Now it will fail with an exception instead. (Thanks to Michael
Santos.)
Own Id: OTP-8915

	New ETS option compressed, to enable a more compact storage format at the
expence of heavier table operations. For test and evaluation, erl +ec can be
used to force compression on all ETS tables.
Own Id: OTP-8922 Aux Id: seq11658

	The default maximum number of slots of a Dets table has been changed as to be
equal to the maximum number of slots. (Thanks to Richard Carlsson.)
Own Id: OTP-8959

 STDLIB 1.17.1

 Fixed Bugs and Malfunctions

	reference() has been substituted for ref() in the documentation.
Own Id: OTP-8733

 Improvements and New Features

	The ms_transform now warns if the fun head shadows surrounding variables (just
like the warnings you would get for an ordinary fun in the same context).
Own Id: OTP-6759

	ets:select_reverse/{1,2,3} are now documented.
Own Id: OTP-7863

	Large parts of the ethread library have been rewritten. The ethread
library is an Erlang runtime system internal, portable thread library used by
the runtime system itself.
Most notable improvement is a reader optimized rwlock implementation which
dramatically improve the performance of read-lock/read-unlock operations on
multi processor systems by avoiding ping-ponging of the rwlock cache lines.
The reader optimized rwlock implementation is used by miscellaneous rwlocks in
the runtime system that are known to be read-locked frequently, and can be
enabled on ETS tables by passing the
{read_concurrency, true} option upon table
creation. See the documentation of ets:new/2 for more information. The
reader optimized rwlock implementation can be fine tuned when starting the
runtime system. For more information, see the documentation of the
+rg command line argument of erl.
There is also a new implementation of rwlocks that is not optimized for
readers. Both implementations interleaves readers and writers during
contention as opposed to, e.g., the NPTL (Linux) pthread rwlock implementation
which use either a reader or writer preferred strategy. The reader/writer
preferred strategy is problematic since it starves threads doing the
non-preferred operation.
The new rwlock implementations in general performs better in ERTS than common
pthread implementations. However, in some extremely heavily contended cases
this is not the case. Such heavy contention can more or less only appear on
ETS tables. This when multiple processes do very large amounts of write locked
operations simultaneously on the same table. Such use of ETS is bad regardless
of rwlock implementation, will never scale, and is something we strongly
advise against.
The new rwlock implementations depend on atomic operations. If no native
atomic implementation is found, a fallback solution will be used. Using the
fallback implies a performance degradation. That is, it is more important now
than before to build OTP with a native atomic implementation.
The ethread library contains native atomic implementations for, x86 (32 and
64 bit), powerpc (32 bit), sparc V9 (32 and 64 bit), and tilera (32 bit). On
other hardware gcc's builtin support for atomic memory access will be used if
such exists. If no such support is found, configure will warn about no
atomic implementation available.
The ethread library can now also use the libatomic_ops library for atomic
memory accesses. This makes it possible for the Erlang runtime system to
utilize optimized native atomic operations on more platforms than before. If
configure warns about no atomic implementation available, try using the
libatomic_ops library. Use the
--with-libatomic_ops=PATH
configure command line argument when specifying where the libatomic_ops
installation is located. The libatomic_ops library can be downloaded from:
http://www.hpl.hp.com/research/linux/atomic_ops/
The changed API of the ethread library has also caused modifications in the
Erlang runtime system. Preparations for the to come "delayed deallocation"
feature has also been done since it depends on the ethread library.
Note: When building for x86, the ethread library will now use instructions
that first appeared on the pentium 4 processor. If you want the runtime system
to be compatible with older processors (back to 486) you need to pass the
--enable-ethread-pre-pentium4-compatibility
configure command line argument when configuring the system.
Own Id: OTP-8544

	Some Built In Functions (BIFs) from the module erlang was never made
autoimported for backward compatibility reasons. As local functions now
override autoimports, new autoimports is no longer a problem, why the
following BIFs are finally made autoimported: monitor/2, monitor/3,
demonitor/2, demonitor/3, error/1, error/2, integer_to_list/2,
list_to_integer/2.
Own Id: OTP-8763

 STDLIB 1.17

 Fixed Bugs and Malfunctions

	The Erlang code preprocessor (epp) sent extra messages on the form
{eof,Location} to the client when parsing the file attribute. This bug,
introduced in R11B, has been fixed.
Own Id: OTP-8470

	The abstract type 'fun' could not be printed by the Erlang pretty printer
(erl_pp). This bug has been fixed.
Own Id: OTP-8473

	The function erl_scan:reserved_word/1 no longer returns true when given
the word spec. This bug was introduced in STDLIB-1.15.3 (R12B-3).
Own Id: OTP-8567

	The documentation of lists:keysort/2 states that the sort is stable.
Own Id: OTP-8628 Aux Id: seq11576

	The shell's line editing has been improved to more resemble the behaviour of
readline and other shells. (Thanks to Dave Peticolas)
Own Id: OTP-8635

	The Erlang code preprocessor (epp) did not correctly handle premature
end-of-input when defining macros. This bug, introduced in STDLIB 1.16, has
been fixed.
Own Id: OTP-8665 Aux Id: OTP-7810

 Improvements and New Features

	The module binary from EEP31 (and EEP9) is implemented.
Own Id: OTP-8217

	The erlang pretty printer (erl_pp) no longer quotes atoms in types.
Own Id: OTP-8501

	The Erlang code preprocessor (epp) now considers records with no fields as
typed.
Own Id: OTP-8503

	Added function zip:foldl/3 to iterate over zip archives.
Added functions to create and extract escripts. See escript:create/2 and
escript:extract/2.
The undocumented function escript:foldl/3 has been removed. The same
functionality can be achieved with the more flexible functions
escript:extract/2 and zip:foldl/3.
Record fields has been annotated with type info. Source files as been adapted
to fit within 80 chars and trailing whitespace has been removed.
Own Id: OTP-8521

	The Erlang parser no longer duplicates the singleton type undefined in the
type of record fields without initial value.
Own Id: OTP-8522

	A regular expression with many levels of parenthesis could cause a buffer
overflow. That has been corrected. (Thanks to Michael Santos.)
Own Id: OTP-8539

	When defining macros the closing right parenthesis before the dot is now
mandatory.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8562

	Some properties of a compiled re pattern are defined to allow for guard tests.
Own Id: OTP-8577

	Local and imported functions now override the auto-imported BIFs when the
names clash. The pre R14 behaviour was that auto-imported BIFs would override
local functions. To avoid that old programs change behaviour, the following
will generate an error:
	Doing a call without explicit module name to a local function having a name
clashing with the name of an auto-imported BIF that was present (and
auto-imported) before OTP R14A
	Explicitly importing a function having a name clashing with the name of an
autoimported BIF that was present (and autoimported) before OTP R14A
	Using any form of the old compiler directive nowarn_bif_clash

If the BIF was added or auto-imported in OTP R14A or later, overriding it with
an import or a local function will only result in a warning,
To resolve clashes, you can either use the explicit module name erlang to
call the BIF, or you can remove the auto-import of that specific BIF by using
the new compiler directive -compile({no_auto_import,[F/A]})., which makes
all calls to the local or imported function without explicit module name pass
without warnings or errors.
The change makes it possible to add auto-imported BIFs without breaking or
silently changing old code in the future. However some current code
ingeniously utilizing the old behaviour or the nowarn_bif_clash compiler
directive, might need changing to be accepted by the compiler.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8579

	The undocumented, unsupport, and deprecated function lists:flat_length/1 has
been removed.
Own Id: OTP-8584

	A bug in re that could cause certain regular expression matches never to
terminate is corrected. (Thanks to Michael Santos and Gordon Guthrie.)
Own Id: OTP-8589

	Nested records can now be accessed without parenthesis. See the Reference
Manual for examples. (Thanks to YAMASHINA Hio and Tuncer Ayaz.)
Own Id: OTP-8597

	receive statements that can only read out a newly created reference are now
specially optimized so that it will execute in constant time regardless of the
number of messages in the receive queue for the process. That optimization
will benefit calls to gen_server:call(). (See gen:do_call/4 for an example
of a receive statement that will be optimized.)
Own Id: OTP-8623

	The beam_lib:cmp/2 function now compares BEAM files in stricter way. The BEAM
files will be considered different if there are any changes except in the
compilation information ("CInf") chunk. beam_lib:cmp/2 used to ignore
differences in the debug information (significant for Dialyzer) and other
chunks that did not directly change the run-time behavior.
Own Id: OTP-8625

	When a gen_server, gen_fsm process, or gen_event terminates abnormally,
sometimes the text representation of the process state can occupy many lines
of the error log, depending on the definition of the state term. A mechanism
to trim out parts of the state from the log has been added (using a
format_status/2 callback). See the documentation.
Own Id: OTP-8630

	Calling sys:get_status() for processes that have globally registered names
that were not atoms would cause a crash. Corrected. (Thanks to Steve Vinoski.)
Own Id: OTP-8656

	The Erlang scanner has been augmented with two new tokens: .. and
Own Id: OTP-8657

	Expressions evaluating to integers can now be used in types and function
specifications where hitherto only integers were allowed ("Erlang_Integer").
Own Id: OTP-8664

	The compiler optimizes record operations better.
Own Id: OTP-8668

	The recently added BIFs erlang:min/2, erlang:max/2 and erlang:port_command/3
are now auto-imported (as they were originally intended to be). Due to the
recent compiler change (OTP-8579), the only impact on old code defining it's
own min/2, max/2 or port_command/3 functions will be a warning, the local
functions will still be used. The warning can be removed by using
-compile({no_auto_import,[min/2,max/2,port_command/3]}). in the source
file.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8669 Aux Id: OTP-8579

	Now, binary_to_term/2 is auto-imported. This will cause a compile warning if
and only if a module has got a local function with that name.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8671

	The predefined builtin type tid() has been removed. Instead, ets:tid() should
be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8687

 STDLIB 1.16.5

 Fixed Bugs and Malfunctions

	Because of a race condition, using filelib:ensure_dir/1 from multiple
processes to create the same path or parts of the same directory structure,
filelib:ensure_dir/1 could return a meaningless {error,eexist}. That race
condition has been eliminated, and {error,eexist} will now be returned only
if there exists a regular file, device file, or some other non-directory file
with the same name. (Thanks to Tuncer Ayaz.)
Own Id: OTP-8389

	A number of bugs concerning re and unicode are corrected:
re:compile no longer loses unicode option, which also fixes bug in re:split.
re:replace now handles unicode charlist replacement argument
re:replace now handles unicode RE charlist argument correctly
re:replace now handles binary unicode output correctly when nothing is
replaced.
Most code, testcases and error isolation done by Rory Byrne.
Own Id: OTP-8394

	The loading of native code was not properly atomic in the SMP emulator, which
could cause crashes. Also a per-MFA information table for the native code has
now been protected with a lock since it turns that it could be accessed
concurrently in the SMP emulator. (Thanks to Mikael Pettersson.)
Own Id: OTP-8397

	user.erl (used in oldshell) is updated to handle unicode in prompt strings
(io:get_line/{1,2}). io_lib is also updated to format prompts with the 't'
modifier (i.e. ~ts instead of ~s).
Own Id: OTP-8418 Aux Id: OTP-8393

	The re module: A regular expression with an option change at the start of a
pattern that had top-level alternatives could cause overwriting and/or a
crash. (Thanks to Michael Santos.)
Own Id: OTP-8438

 Improvements and New Features

	The ability for the gen_server and gen_fsm callback modules to format their
own state for display under the sys:get_status/1,2 calls has been restored and
documented. (Thanks to Steve Vinoski.)
Own Id: OTP-8324

	c:nc/{1,2} used to assume that the beam file was created in the same
directory as the source code and failed to load the code if it was not.
Corrected to look for the beam file in the current directory or in the
directory specified by the {outdir,Dir} option. (Thanks to Alex Suraci.)
Own Id: OTP-8337

	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343

	Shell tab completion now works for quoted module and function names. (Thanks
to Ulf Wiger.)
Own Id: OTP-8383

	Explicit top directories in archive files are now optional.
For example, if an archive (app-vsn.ez) just contains an app-vsn/ebin/mod.beam
file, the file info for the app-vsn and app-vsn/ebin directories are faked
using the file info from the archive file as origin. The virtual direcories
can also be listed. For short, the top directories are virtual if they does
not exist.
Own Id: OTP-8387

	Macros overloading has been implemented. (Thanks to Christopher Faulet.)
Own Id: OTP-8388

	The new function shell:prompt_func/1 and the new application configuration
parameter shell_prompt_func can be used for customizing the Erlang shell
prompt.
Own Id: OTP-8393

	Improved handling of typed records in escripts
Own Id: OTP-8434

	Added supervisor:count_children/1 to count the number of children being
managed without the memory impact of which_children/1. (Thanks to Jay Nelson.)
Own Id: OTP-8436

 STDLIB 1.16.4

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	[escript] The restriction that the first line in escripts must begin with
#! has been removed.
[escript] Some command line options to the escript executable has now been
documented. For example you can run an escript in the debugger by just adding
a command line option.
[escript] The documentation of the escript header syntax has been clarified.
For example the header is optional. This means that it is possible to directly
"execute" .erl, .beam and.zip files.
Own Id: OTP-8215

	Optimized array:from_orddict/1, it is now faster and uses less memory if the
orddict was sparse.
Changed array:reset/2, it will now never expand the array which it could
before for non fixed arrays. See the documentation.
Own Id: OTP-8216

	The Erlang Pretty Printer (erl_pp) now puts the leading [of list
comprehensions as well as the leading << of bit string comprehensions on a
separate line in order to expose the Cover counter of the template.
Own Id: OTP-8227

	The extension ".xrl" used for Leex input files is now recognized by the
compiler.
Own Id: OTP-8232

	Some clarifications have been made in the documentation regarding
gen_server, gen_fsm, and gen_event behavior when handling 'EXIT'
messages from the parent process. For more information see the gen_server,
gen_fsm, and gen_event documentation.
Own Id: OTP-8255 Aux Id: seq11419

	The -on_load() directive can be used to run a function when a module is
loaded. It is documented in the section about code loading in the Reference
Manual.
Own Id: OTP-8295

 STDLIB 1.16.3.1

 Fixed Bugs and Malfunctions

	An erroneous type spec for gen:start/6 caused dialyzer to erroneously issue
warnings when {spawn_opt, SpawnOptionList} was passed in the option list to
the gen_server and gen_fsm start functions.
Own Id: OTP-8068 Aux Id: seq11323, seq11314

 STDLIB 1.16.3

 Fixed Bugs and Malfunctions

	The linter used to crash on invalid -opaque declarations.
Own Id: OTP-8051

	Bugs in digraph:add_edge/5 and digraph:del_path/3 have been fixed. (Thanks
to Crystal Din.)
Own Id: OTP-8066

	When trying to insert objects with dets:insert_new() into a Dets table of
type duplicate_bag, already existing objects would sometimes be duplicated.
This bug has been fixed. (Thanks to Crystal Din.)
Own Id: OTP-8070

	Running erlc in a very deep directory (with a path length of more 256 or more
characters) would cause the emulator to crash in a call to
list_to_atom/1. (Thanks to Chris Newcombe.)
Own Id: OTP-8124

	A few minor bugs have been fixed in the Erlang Code Preprocessor (epp).
Own Id: OTP-8130

	A bug in The Erlang Meta Interpreter (erl_eval) has been fixed: exceptions
generated in the template of bit string comprehensions were not handled
properly. (Thanks to Ulf Wiger.)
Own Id: OTP-8133

 Improvements and New Features

	Option {capture,none} was missing in documentation for re:run/3.
Own Id: OTP-8113

	When erl_scan:tokens() returns an error tuple
{error, ErrorInfo, EndLocation}, the list LeftOverChars is the remaining
characters of the input data, starting from EndLocation. It used to be the
empty list.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8129

	The Erlang Meta Interpreter (erl_eval) has been somewhat optimized when it
comes to interpreting receive-expressions. (Thanks to Richard Carlsson.)
Own Id: OTP-8139

	The Erlang Pretty Printer (erl_pp) has been modified as to handle types.
Own Id: OTP-8150

 STDLIB 1.16.2

 Fixed Bugs and Malfunctions

	The text of tokens returned by the Erlang scanner (erl_scan) was sometimes
empty when the text option was given and StartLocation was a line. This
bug has been fixed.
Own Id: OTP-7965

	The documentation for base64:decode/1 has been updated to point out that it
strips whitespace.
base64:decode/1 and base64:mime_decode/1 would sometimes fail instead of
stripping away non-base64 characters.
Own Id: OTP-7984

	Two types in the gen module were corrected.
Own Id: OTP-8029 Aux Id: seq11296

	array:from_orddict([]) and array:from_list([]) would construct fixed
arrays instead of extendible arrays.
Own Id: OTP-8033

 Improvements and New Features

	Interpreted escripts are now tail recursive.
The function erl_eval:expr/5 has been introduced.
Own Id: OTP-7933

	gen_server:call/2,3 will be somewhat faster if the calling process has a
many messages in its message queue.
Own Id: OTP-7979

	Random now supports seed with arity one, random:seed/1, which takes a
three-tuple.
Own Id: OTP-8019

	The regexp module now recognizes the escape sequences \xXY and \x{X...}.
Own Id: OTP-8024

 STDLIB 1.16.1

 Fixed Bugs and Malfunctions

	The documentation of dets:open_file/1 now states that the file is repaired
if it has not been properly closed. (Thanks to Ulf Wiger.)
Own Id: OTP-7895

 Improvements and New Features

	The Erlang scanner no longer returns the text of tokens when the start
location is a pair of a line and column unless the new option text is
supplied (incompatibility with R13A).
There are new functions to access the attributes of tokens:
attributes_info/1,2 and set_attribute/3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7892 Aux Id: OTP-7810

	Several glitches and performance issues in the Unicode and I/O-system
implementation of R13A have been corrected.
Own Id: OTP-7896 Aux Id: OTP-7648 OTP-7887

	The type spec of filelib:wildcard/2 has been corrected.
Own Id: OTP-7915

	New functions: gb_sets:is_disjoint/2, ordsets:is_disjoint/2, and
gb_sets:is_disjoint/2.
Own Id: OTP-7947

	The function gb_trees:map/2 which was added in R13A is now documented.
Own Id: OTP-7948

 STDLIB 1.16

 Fixed Bugs and Malfunctions

	Fixed a minor race conditions in gen_server:start*: if one of these
functions returned {error,Reason} or ignore, the name could still be
registered (either locally or in global).
A process started by proc_lib in some cases depended on its process
dictionary not to be erased, and would crash when terminating abnormally and
not generate a proper crash report. This has been corrected (but the initial
call will not be shown in the error report if the process dictionary has been
erased). NOTE: There is no longer any need to erase the process dictionary for
memory conservation reasons, since the actual call arguments are no longer
saved in the process dictionary.
Own Id: OTP-7669

	The Erlang preprocessor used wrong line number when stringifying macro
arguments. (Thanks to John Hughes.)
Own Id: OTP-7702

	A bug in the qlc module has been fixed: merge join sometimes failed to
return all answers. (Thanks to Bernard Duggan.)
Own Id: OTP-7714

 Improvements and New Features

	A new option, key_equality, has been added to qlc:table/2. This option
makes it possible for qlc to better handle tables that use ==/2 when
comparing keys for equality (examples of such tables are ordered ETS tables
and gb_table in qlc(3)).
Own Id: OTP-6674

	The functions lists:seq/1,2 return the empty list in a few cases when they
used to generate an exception, for example lists:seq(1, 0). See lists(3) for
details. (Thanks to Richard O'Keefe.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7230

	The order of objects visited in select for ordered_set is now documented.
Own Id: OTP-7339

	It is now possible to debug code in escripts and archives.
Own Id: OTP-7626

	Support for Unicode is implemented as described in EEP10. Formatting and
reading of unicode data both from terminals and files is supported by the io
and io_lib modules. Files can be opened in modes with automatic translation to
and from different unicode formats. The module 'unicode' contains functions
for conversion between external and internal unicode formats and the re module
has support for unicode data. There is also language syntax for specifying
string and character data beyond the ISO-latin-1 range.
The interactive shell will support input and output of unicode characters when
the terminal and operating system supports it.
Please see the EEP and the io/io_lib manual pages as well as the stdlib users
guide for details.
I/O-protocol incompatibilities:
The ioprotocol between io_Server and client is updated to handle protocol
data in unicode formats. The updated protocol is now documented. The
specification resides in the stdlib _users manual, which is a new part of the
manual.
io module incompatibilities:
The io:putchars, io:get_chars and io:get_line all handle and return unicode
data. In the case where binaries can be provided (as to io:put_chars), they
shall be encoded in UTF-8. When binaries are returned (as by
io:get_line/get_chars when the io_server is set in _binary mode) the returned
data is also always encoded as UTF-8. The file module however still returns
byte-oriented data, why file:read can be used instead of io:get_chars to read
binary data in ISO-latin-1.
io_lib module incompatibilities:
io_lib:format can, given new format directives (i.e "~ts" and "~tc"), return
lists containing integers larger than 255.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7648 Aux Id: OTP-7580 OTP-7514 OTP-7494 OTP-7443 OTP-7181 EEP10
EEP11

	The function pool:attach/1 now returns already_attached if the node is
already attached, rather than allready_attached (sic!). (Thanks to Edwin
Fine.)
Own Id: OTP-7653 Aux Id: OTP-7603

	Preprocessor directives are now allowed in escripts. This means that for
example macros may be used in escripts.
Own Id: OTP-7662

	When a process started with proc_lib, gen_server, or gen_fsm exits with
reason {shutdown,Term}, a crash report will no longer be generated (to allow
a clean shutdown, but still provide additional information to process that are
linked to the terminating process).
Own Id: OTP-7740 Aux Id: seq10847

	A new BIF, lists:keyfind/3, has been added. It works like
lists:keysearch/3 except that it does not wrap the returned tuple in a
value tuple in case of success. (Thanks to James Hague for suggesting this
function.)
Own Id: OTP-7752

	lists:suffix(Suffix, List) used to have a a complexity of
length(Suffix)*length(List) (which could become quite slow for some inputs).
It has now been re-implemented so that its complexity is
length(Suffix)+length(List). (Thanks to Richard O'Keefe for the new
implementation.)
Own Id: OTP-7797

	The Erlang scanner has been augmented as to return white spaces, comments, and
exact location of tokens. The functions string/3, tokens/4, and
token_info/1,2 are new. See erl_scan(3) for details.
tokens/3,4 have been modified as to return a list of tokens instead of an
error when eof is encountered before the dot.
Own Id: OTP-7810

	filelib:fold_files/5 now uses the re module instead of the regexp module
for regular expression matching. In practice, this change will not be a
problem for most regular expressions used for filelib:fold_files/5. (The
major difference in regular expression is that parenthesis and curly brackets
is treated as literal characters by regexp but as special characters by
re; fortunately, those characters are rarely used in filenames.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7819

	digraph:new(Type) will now cause a badarg exception if Type is not a
valid type. Similarly, digraph_utils:subgraph/2,3 will now cause a badarg
if the arguments are invalid. (Those functions used to return error tuples if
something was wrong.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7824

	The argument passed to random:uniform/1 must now be an integer (as stated in
the documentation). In previous releases, a floating point number was also
allowed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7827

	The copyright notices have been updated.
Own Id: OTP-7851

	A few missing match spec functions was added to dbg:fun2ms; exception_trace/0
and trace/2,3.
There is a new function queue:member/2.
A bug in io_lib:fread that made it accidentally concatenate fields separated
by newline has been corrected. Reported and analyzed by Matthew Palmer to
erlang-patches.
Own Id: OTP-7865

 STDLIB 1.15.5

 Fixed Bugs and Malfunctions

	A bug in the qlc module has been fixed: when merge joining two query handles
the temporary file used for equivalence classes was not truncated properly
which could result in poor performance.
Own Id: OTP-7552

	The characters 16#C0 and 16#E0 ("A" and "a" with grave accent), were not
properly converted by the string:to_lower/1 and string:to_upper/1
functions. (Thanks to Richard O'Keefe.)
Own Id: OTP-7589

	The function pool:attach/1 now returns already_attached if the node is
already attached, rather than allready_attached (sic!). (Thanks to Edwin
Fine.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7603

	The documentation for io:get_line/1,2 now mentions that the return value can
also be {error,Reason}.
Own Id: OTP-7604 Aux Id: seq11063

 Improvements and New Features

	The split function is now added to the re library. Exceptions and errors from
both run, replace and split are made more consistent.
Own Id: OTP-7514 Aux Id: OTP-7494

	Processes spawned using proc_lib (including gen_server and other library
modules that use proc_lib) no longer keep the entire argument list for the
initial call, but only the arity.
Also, if proc_lib:spawn/1 is used to spawn a fun, the actual fun is not
kept, but only module, function name, and arity of the function that
implements the fun.
The reason for the change is that keeping the initial fun (or a fun in an
argument list), would prevent upgrading the code for the module. A secondary
reason is that keeping the fun and function arguments could waste a
significant amount of memory.
The drawback with the change is that the crash reports will provide less
precise information about the initial call (only Module:Function/Arity
instead of Module:Function(Arguments)). The function
proc_lib:initial_call/1 still returns a list, but each argument has been
replaced with a dummy atom.
Own Id: OTP-7531 Aux Id: seq11036

	There is now experimental support for loading of code from archive files. See
the documentation of code, init, erl_prim_loaderand escript for more
info.
The error handling of escripts has been improved.
An escript may now set explicit arguments to the emulator, such as
-smp enabled.
An escript may now contain a precompiled beam file.
An escript may now contain an archive file containing one or more
applications (experimental).
The internal module code_aux has been removed.
Own Id: OTP-7548 Aux Id: otp-6622

	Enabled explicit control of which types of files that should be compressed in
a ZIP archive.
Own Id: OTP-7549 Aux Id: otp-6622

	In the job control mode, the "s" and "r" commands now take an optional
argument to specify which shell to start. (Thanks to Robert Virding.)
Own Id: OTP-7617

 STDLIB 1.15.4

 Fixed Bugs and Malfunctions

	A bug in the calendar module could cause
calendar:local_time_to_universal_time_dst/1 to return duplicate identical
values for local times in timezones without DST. Multiple values should only
be returned when a local time is within the hour occurring twice due to shift
from DST to non-DST, and certainly only in timezones with DST. The correct
behaviour is now implemented.
Own Id: OTP-7344 Aux Id: seq10960

	The documentation of (d)ets:init_table() has been corrected. (Thanks to Paul
Mineiro.)
Own Id: OTP-7413

	The soft upper limit of 60 on the number of non-white characters on a line,
which was introduced in R12B-0 for the control sequences p and P of the
functions io:fwrite/2,3 and io_lib:fwrite/2, has been removed. This means
that terms whose printed representation fits on a line will have no NEWLINEs.
The Erlang shell still uses the 60 character limit, though.
Own Id: OTP-7421 Aux Id: OTP-6708

	Some debug code has been removed from Dets.
Own Id: OTP-7424

	The documentation of dets:match_delete/2 has been corrected. (Thanks to Paul
Mineiro.)
Own Id: OTP-7445

	Corrections of digraph(3). (Thanks to Vlad Dumitrescu.)
Own Id: OTP-7492

	For the process that an escript runs in, the trap_exit process flag is now
false instead of true (as in previous releases). Scripts that depend on
the previous (counter-intuitive) behaviour might not work. (Thanks to Bengt
Kleberg.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7517

 Improvements and New Features

	The documentation of lists:(u)sort/2 now states what is expected of an
ordering function.
Own Id: OTP-7489

	The re module is extended with repetitive matches (global option) and
replacement function.
Own Id: OTP-7494 Aux Id: OTP-7181

	The Erlang shell now displays a nicer error message when evaluating an
undefined command. (Thanks to Richard Carlsson.)
Own Id: OTP-7495

 STDLIB 1.15.3

 Fixed Bugs and Malfunctions

	zip:unzip to/from binary with empty directories did not work. (Thanks to
Martin Dvorak.)
Own Id: OTP-7248

	The documentation of the control sequence w of the io_lib module now
states that floating point numbers are printed accurately.
Own Id: OTP-7324 Aux Id: OTP-7084

	zip:unzip was not supporting a flavour of the zip format found in jar-files.
Own Id: OTP-7382 Aux Id: seq10970

 Improvements and New Features

	An experimental module "re" is added to the emulator which interfaces a
publicly available regular expression library for Perl-like regular
expressions (PCRE). The interface is purely experimental and will be subject
to change.
The implementation is for reference and testing in connection to the relevant
EEP.
Own Id: OTP-7181

 STDLIB 1.15.2

 Fixed Bugs and Malfunctions

	When inserting many small objects, Dets sometimes crashed when reaching the
maximum number of slots. (Thanks to Daniel Goertzen.)
Own Id: OTP-7146

	Processes linked to the Erlang shell did not get an exit signal when the
evaluator process was killed. This bug, introduced in R12B-0, has been fixed.
Own Id: OTP-7184 Aux Id: OTP-6554

	Invalid arguments to ets:update_counter/3 were not handled correctly. A
tuple position (Pos) less than 1 caused the element directly following the
key to be updated (as if no position at all had been specified). All invalid
values for Pos will now fail with badarg.
Own Id: OTP-7226

	For certain terminals, io:columns/0 could return 0 instead of enotsup. That is
now corrected.
Own Id: OTP-7229 Aux Id: seq10886

	qlc:info() can now handle port identifiers, pids, references, and funs.
(Thanks to Wojciech Kaczmare for reporting this bug.)
When evaluating the parent_fun messages sent to the process calling
qlc:cursor() were sometimes erroneously consumed. This bug has been fixed.
Own Id: OTP-7232

	erl_parse:abstract() can now handle bit strings.
Own Id: OTP-7234

 Improvements and New Features

	The queue module has been rewritten to make it easier to use. Suggestions
and discussion from and with among others Lev Walkin, Anders Ramsell and Rober
Virding in december 2007 on erlang-questions@erlang.org. It was also discussed
to change the internal representation to contain length information which
would speed up len/1 but that change has been postponed. Anyone interested
may write an EEP and try to reach an acceptable compromise for queue overhead
and thereby the speed of all other operations than len/1. The queue module
is now optimized for fast and minimal garbage in/2 and out/1 and such. See
the documentation.
New functions: is_queue/1, get/1, get_r/1, peek/1,
peek_r/1, drop/1, drop_r/1 and liat/1. is_queue/1 is a new
predicate, liat/1 is a correction of an old misspelling, and the others
(get*, peek* and drop*) are new interface functions.
Own Id: OTP-7064

	The functions io_lib:write/1,2 and io_lib:print/1,4 have been changed when
it comes to writing floating point numbers. This change affects the control
sequences p, P, w, and W of the io_lib module. (Thanks to Bob
Ippolito for code contribution.)
Own Id: OTP-7084

	Updated the documentation for erlang:function_exported/3 and io:format/2
functions to no longer state that those functions are kept mainly for
backwards compatibility.
Own Id: OTP-7186

	A new BIF ets:update_element/3. To update individual elements within an
ets-tuple, without having to read, update and write back the entire tuple.
Own Id: OTP-7200

	string:join/2 now accepts an empty list as first argument.
Own Id: OTP-7231 Aux Id: OTP-6671

	qlc:info/1,2 accepts a new option, depth. The type SelectedObjects used
in the description of qlc:table/2 has been augmented.
Own Id: OTP-7238

	tuple_size/1 and byte_size/1 have been
substituted for size/1 in the documentation.
Own Id: OTP-7244

 STDLIB 1.15.1

 Fixed Bugs and Malfunctions

	Ets:select/3 in combination with ets:repair_continuation/2 and ordered_set
data tables could result in function_clause although used as intended. This is
now corrected. Thanks to Paul Mineiro for finding and isolating the bug!
Own Id: OTP-7025

	The compiler warning for the deprecated function ftp:close/1 now mentions
the correct replacement function.
The warning for the removed functions in the httpd_util module have been
changed to say they have been removed, not merely deprecated. (Thanks to
Fredrik Thulin.)
Own Id: OTP-7034 Aux Id: seq10825

	In (Expr)#r{} (no fields are updated), Expr is no longer evaluated more
than once. There is also a test that Expr is of the correct record type.
(Thanks to Dominic Williams.)
Own Id: OTP-7078 Aux Id: OTP-4962

	Documentation bugfixes and clarifications.
(Thanks to Joern (opendev@gmail.com), Matthias Lang, and Richard Carlsson.)
Own Id: OTP-7079

	Duplicated objects were sometimes not deleted from the list of answers when a
QLC table was traversed using a match specification. (Thanks to Dmitri
Girenko.)
Own Id: OTP-7114

 Improvements and New Features

	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

	It is now possible to hibernate a gen_server/gen_event/gen_fsm. In gen_server
and gen_fsm, hibernation is triggered by returning the atom
'hibernate' instead of a timeout value. In the gen_event case hibernation is
triggered by a event handler returning a tuple with an extra element
containing the atom 'hibernate'.
Own Id: OTP-7026 Aux Id: seq10817

	Some undocumented debug functionality has been added to Dets.
Own Id: OTP-7066

	The functions digraph_utils:is_tree/1, digraph_utils:is_arborescence/1,
and digraph_utils:arborescence_root/1 are new.
Own Id: OTP-7081

	The compiler could generate suboptimal code for record updates if the record
update code consisted of multiple source code lines.
Own Id: OTP-7101

 STDLIB 1.15

 Fixed Bugs and Malfunctions

	Bugs have been fixed in qlc:
	Setting the lookup_fun option of qlc:table/2 to undefined could cause
a crash.
	If a QLC restricted some column of a table in such a way that a traversal
using a match specification was possible and the QLC also compared the key
column or some indexed column of the the table with a column of some other
table, qlc always chose to traverse the table first, never considering
lookup join. This has been changed so that lookup join is always preferred;
if an initial traversal using the match specification is desired, the query
needs to be rewritten introducing an extra QLC with the filter(s)
restricting the column.
	When trying to find candidates for match specifications and lookup, filters
using variables from one generator only are ignored unless they are placed
immediately after the generator and possibly other filters using variables
from the same generator. In particular, filters joining two tables should
not be placed between the generator and the filters using the generator
only.
	The call-back function TraverseFun used for implementing QLC tables is
allowed to return a term other than a list since STDLIB 1.14 (OTP-5195).
However, when the returned term was a fun qlc often tried to call the fun
instead of returning it.

A few minor optimizations have been implemented as well.
Own Id: OTP-6673

	A bug concerning the use of parameterized modules from the shell has been
fixed.
Own Id: OTP-6785

	A bug regarding the size expression of the bit syntax has been fixed in the
erl_eval module.
Own Id: OTP-6787

	The log_mf_h event handler didn't close the index file when it was done
reading it causing a file descriptor leak.
Own Id: OTP-6800

	Definitions for the filename() and dirname() types have been added to the
documentation for the filelib module.
Own Id: OTP-6870

	file:write_file/3, file:write/2 and file:read/2 could crash (contrary to
documentation) for odd enough file system problems, e.g write to full file
system. This bug has now been corrected.
In this process the file module has been rewritten to produce better error
codes. Posix error codes now originate from the OS file system calls or are
generated only for very similar causes (for example 'enomem' is generated if a
memory allocation fails, and 'einval' is generated if the file handle in
Erlang is a file handle but currently invalid).
More Erlang-ish error codes are now generated. For example {error,badarg} is
now returned from file:close/1 if the argument is not of a file handle type.
See file(3).
The possibility to write a single byte using file:write/2 instead of a list
or binary of one byte, contradictory to the documentation, has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6967 Aux Id: OTP-6597 OTP-6291

	A bug concerning the evaluation of the ++/2 operator has been fixed in
erl_eval. (Thanks to Matthew Dempsky.)
Own Id: OTP-6977

 Improvements and New Features

	The behaviour of the internal functions gen:call/3,4 has been changed slightly
in the rare case that when the caller was linked to the called server, and the
server crashed during the call; its exit signal was consumed by the
gen:call/3,4 code and converted to an exit exception. This exit signal is no
longer consumed.
To even notice this change, 1) the calling process has to be linked to the
called server.
	the call must not be remote by name that is it must be local or remote by
pid, local by name or global by name.

	the calling process has to have set
process_flag(trap_exit, true).

	the server has to crash during the call.

	the calling process has to be sensitive to getting previously consumed
{'EXIT',Pid,Reason} messages in its message queue.

The old behaviour was once the only way for a client to notice if the server
died, but has since erlang:monitor(process, {Name,Node}) was introduced and
used in gen:call been regarded as an undesired behaviour if not a bug.
The affected user APIs are: gen_server:call/2,3,
gen_fsm:sync_send_event/2,3, gen_fsm:sync_send_all_state_event/2,3,
gen_event:_, sys:_ and maybe a few others that hardly will be noticed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-3954 Aux Id: Seq 4538

	When an exception occurs the Erlang shell now displays the class, the reason,
and the stacktrace in a clearer way (rather than dumping the raw EXIT tuples
as before). proc_lib:format/1 displays the exception of crash reports in the
same clearer way.
The new shell command catch_exception and the new application configuration
parameter shell_catch_exception can be used for catching exceptions that
would normally exit the Erlang shell.
Own Id: OTP-6554 Aux Id: OTP-6289

	The function string:join/2 joins strings in a list with a separator.
Example: 'string:join(["a", "b", "c"], ", ") gives "a, b, c"'
Own Id: OTP-6671

	The control sequence P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 now inserts fewer line breaks when
printing tuples and lists. A soft upper limit of 60 on the number of non-white
characters on a line has been introduced.
Own Id: OTP-6708

	The new module array provides a fast functional array implementation.
Own Id: OTP-6733

	Functions that have long been deprecated have now been removed from the
following modules: dict, erl_eval, erl_pp, io, io_lib, lists,
orddict, ordsets, sets, and string.
The undocumented function lists:zf/3 has also been removed (use a list
comprehension or lists:zf/2 instead).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6845

	Minor documentation corrections for file:pread/2 and file:pread/3.
Own Id: OTP-6853

	Contract directives for modules in Kernel and STDLIB.
Own Id: OTP-6895

	The ets:fixtable/2 function, which has been deprecated for several releases,
has been removed.
The ets:info/1 function has been reimplemented as a BIF, which guarantees
that information returned is consistent.
The ets:info/2 function now fails with reason badarg if the second
argument is invalid. (Dialyzer can be used to find buggy code where the second
argument is misspelled.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6906

	The Erlang pretty printer erl_pp now inserts more newlines in order to
facilitate line coverage analysis by Cover. (Thanks to Thomas Arts.)
Own Id: OTP-6911

	The documentation for ets:safe_fixtable/2, ets:foldl/3, and ets:foldr/3 is now
clearer about what will happen if objects are inserted during table
traversals.
Own Id: OTP-6928 Aux Id: seq10779

	It is now possible to extract files in tar files directly into binaries. It is
also possible to add files to tar files directly from binaries.
Own Id: OTP-6943

	The functions keystore/4 and keytake/3 are new in the lists module.
Own Id: OTP-6953

	The new qlc option tmpdir_usage can be used for outputting messages onto
the error logger when a temporary file is about to be created, or to prohibit
the usage of temporary files altogether.
Own Id: OTP-6964

 STDLIB 1.14.5.3

 Improvements and New Features

	The allowed syntax for -type() and -spec() was updated.
Own Id: OTP-6861 Aux Id: OTP-6834

 STDLIB 1.14.5.2

 Improvements and New Features

	The compiler will for forward compatibility ignore the -type() and -spec()
attributes that will be introduced in the R12B release.
Own Id: OTP-6834

 STDLIB 1.14.5.1

 Fixed Bugs and Malfunctions

	The log_mf_h event handler didn't close the index file when it was done
reading it causing a file descriptor leak.
Own Id: OTP-6800

 Improvements and New Features

	The dict:size/1 and orddict:size/1 functions have been documented.
Own Id: OTP-6818

 STDLIB 1.14.5

 Fixed Bugs and Malfunctions

	Bugs have been fixed in Dets concerning comparison (==) and matching (=:=).
The STDLIB manual pages have been updated as to more carefully state when
terms are matched and when they are compared.
Own Id: OTP-4738 Aux Id: OTP-4685

	The shell has been updated to fix the following flaws: Shell process exit left
you with an unresponsive initial shell if not using oldshell. Starting a
restricted shell with a nonexisting callback module resulted in a shell where
no commands could be used, not even init:stop/0. Fun's could not be used as
parameters to local shell functions (in shell_default or user_default) when
restricted_shell was active.
Own Id: OTP-6537

	A bug in QLC's parse transform has been fixed.
Own Id: OTP-6590

	A bug concerning lists:sort/1 and lists:keysort/2 and a mix of floating
point numbers and integers has been fixed.
Own Id: OTP-6606

	When calling erlang:garbage_collect/0 in the Erlang shell not only the
evaluator process (the one returned by calling self/0 in the Erlang shell)
is garbage collected, but also the process holding the history list.
Own Id: OTP-6659

	Functions of the beam_lib module that used to catch exceptions and return a
tuple {'EXIT',Reason} now exit with the reason Reason.
Own Id: OTP-6711

	The erl_eval module now calls the non-local function handler whenever an
operator is evaluated (exceptions are andalso, orelse, and catch). The
non-local function handler is now also called when the function or operator
occurs in a guard test (such calls used to be ignored).
These changes affect the Erlang shell when running in restricted mode: the
callback function non_local_allowed/3 is now called for operators such as
'!'/2. This means that non_local_allowed/3 may need to
be changed as to let operators through. Note that erlang:'!'/2 as well as
erlang:send/2,3 have to be restricted in order to stop message passing in
the shell.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6714 Aux Id: seq10374

 Improvements and New Features

	The new compiler option warn_obsolete_guard can be used for turning on
warnings for calls to old type testing BIFs.
Own Id: OTP-6585

	For scripts written using escript, there is a new function
escript:script_name/0, which can be used to retrieve the pathame of the
script. The documentation has been clarified regarding pre-defined macros such
as ?MODULE and the module name.
Own Id: OTP-6593

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

 STDLIB 1.14.4

 Fixed Bugs and Malfunctions

	The MD5 calculation of a BEAM file done by code:module_md5/1,
beam_lib:md5/1, and by the compiler for the default value of the vsn
attribute have all been changed so that its result will be the same on all
platforms; modules containing funs could get different MD5s on different
platforms.
Own Id: OTP-6459

	When sorting terms using the file_sorter module (the option Format set to
term), file errors were not always properly handled. This bug has been
fixed.
The directory supplied with the tmpdir option is no longer checked unless it
is actually used. The error reason not_a_directory can no longer be
returned; instead a file_error tuple is returned
Own Id: OTP-6526

	Bugs regarding try/catch have been fixed in the erl_eval module.
Own Id: OTP-6539

	When sorting the operands of a join operation, QLC called file:open/3 with
bad arguments. This bug has been fixed.
Own Id: OTP-6562 Aux Id: seq10606

 Improvements and New Features

	The functions beam_lib:cmp/1 and beam_lib:strip/1 (and similar functions)
have been updated to handle optional chunks (such as "FunT") in more general
way in order to be future compatible.
The function beam_lib:chunks/3 has been added.
The function beam_lib:md5/1 has been added.
Own Id: OTP-6443

	Added base64 as a module to stdlib, encoding and decoding
Own Id: OTP-6470

	Added the functions to_upper/1 and to_lower/1 to the string module. These
provide case conversion for ISO/IEC 8859-1 characters (Latin1) and strings.
Own Id: OTP-6472

	The callback function non_local_allowed/3 used by the restricted shell can
now return the value {{restricted,NewFuncSpec,NewArgList},NewState} which
can be used for letting the shell call some other function than the one
specified.
Own Id: OTP-6497 Aux Id: seq10555

	There is a new escript program that can be used for writing scripts in
Erlang. Erlang scripts don't need to be compiled and any arguments can be
passed to them without risk that they are interpreted by the Erlang system.
Own Id: OTP-6505

	The Format argument of the functions io:fwrite/2,3 and io_lib:fwrite/2
is now allowed to be a binary.
Own Id: OTP-6517

 STDLIB 1.14.3.1

 Fixed Bugs and Malfunctions

	The control sequences p and P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 could cause a badarg failure when
applied to binaries. This bug was introduced in STDLIB 1.14.3. (Thanks to
Denis Bilenko.)
Own Id: OTP-6495

 Improvements and New Features

	Added the option {cwd, Dir} to make zip-archives with relative pathnames
without having to do (a global) file:set_cwd.
Own Id: OTP-6491 Aux Id: seq10551

 STDLIB 1.14.3

 Fixed Bugs and Malfunctions

	The spawn_opt/2,3,4,5 option monitor -- introduced in Kernel 2.11.2 -- is
currently not possible to use when starting a process using proc_lib, that
is, also when starting a gen_server, gen_fsm etc.
This limitation has now been properly documented and the behavior of the
gen_fsm, gen_server, and proc_lib start and start_link functions
when providing this option has been changed from hanging indefinitely to
failing with reason badarg.
(Thanks to Fredrik Linder)
Own Id: OTP-6345

 Improvements and New Features

	The control sequence P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 now replaces the tail of binary strings
with ... when the maximum depth has been reached. For instance,
io:fwrite("~P", [<<"a binary string">>, 3]). prints <<"a binary"...>>.
The indentation takes more care not to exceed the right margin, if possible.
If the maximum depth is reached while printing a tuple, ,... is printed
instead of |... (this change applies to the control sequence W as well).
Own Id: OTP-6354

	The Erlang shell command h/0 that prints the history list now avoids
printing (huge) terms referred to by v/1 but instead just prints the call to
v/1.
Own Id: OTP-6390

 STDLIB 1.14.2.2

 Fixed Bugs and Malfunctions

	The functions dets:select/1,3, dets:match/1,3, and dets:match_object/1,3
have been changed as to never return {[],Continuation}. This change affects
the corresponding functions in Mnesia.
Bugs have been fixed in QLC: qlc:info() could crash if the tmpdir option
did not designate a valid directory; the results of looking up keys are kept
in RAM, which should improve performance.
Own Id: OTP-6359

 STDLIB 1.14.2.1

 Fixed Bugs and Malfunctions

	A bug in erl_pp:exprs() has been fixed.
Own Id: OTP-6321 Aux Id: seq10497

 STDLIB 1.14.2

 Fixed Bugs and Malfunctions

	The control sequences p and P of the Format argument of the functions
io:format/2,3 and io_lib:format/2 did not handle binaries very well. This
bug, introduced in stdlib-1.14, has been fixed.
Own Id: OTP-6230

	filelib:wildcard(Wc, PathWithRedundantSlashes), where
PathWithRedundantSlashes is a directory path containing redundant slashes,
such as /tmp/ or //tmp, could return incorrect results. (Thanks to Martin
Bjorklund.)
Own Id: OTP-6271

	The Erlang code preprocessor crashed if the predefined macros ?MODULE or
?MODULE_STRING were used before the module declaration. This bug has been
fixed.
Own Id: OTP-6277

 Improvements and New Features

	Support for faster join of two tables has been added to the qlc module.
There are two kinds of fast joins: lookup join that uses existing indices, and
merge join that takes two sorted inputs. There is a new join option that can
be used to force QLC to use a particular kind of join in some QLC expression.
Several other changes have also been included:
	The new tmpdir option of cursor/2, eval/2, fold/4, and info/2 can
be used to set the directory that join uses for temporary files. The option
also overrides the tmpdir option of keysort/3 and sort/2.

	The new lookup option can be used to assert that constants are looked up
when evaluating some QLC expression.

	The cache and cache_all options accept new tags: ets, list, and
no. The tag list caches answers in a list using a temporary file if the
answers cannot be held in RAM. Combining {cache,list} and {unique, true}
is equivalent to calling sort/2 with the option unique set to true.
The old tags true (equivalent to ets) and false (equivalent to no)
are recognized for backward compatibility.

	The new option max_list_size can be used to set the limit where merge join
starts to use temporary files for large equivalence classes and when answers
cached in lists are put on temporary files.

	There is a new callback is_sorted_key to be supplied as an option to
table/2.

	QLC analyzes each and every QLC expression when trying to find constants for
the lookup function. Hitherto only QLC expressions with exactly one
generator were analyzed.
Note that only filters with guard syntax placed immediately after the
generator are analyzed. The restriction to guard filters is an incompatible
change. See qlc for further details.

	In a similar way several match specifications for traversal of QLC tables
can be utilized for different generators of one single QLC expression.

	A bug has been fixed: when caching answers to a sufficiently complex query
it could happen that some answers were not returned.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6038

	The Erlang pretty printer (erl_pp) is now much faster when the code is
deeply nested. A few minor bugs have been fixed as well.
Own Id: OTP-6227 Aux Id: OTP-5924

	The Erlang shell now tries to garbage collect large binaries. Under certain
circumstances such binaries could otherwise linger on for an indefinite amount
of time.
Own Id: OTP-6239

	To help Dialyzer find more bugs, many functions in the Kernel and STDLIB
applications now only accept arguments of the type that is documented.
For instance, the functions lists:prefix/2 and lists:suffix/2 are
documented to only accept lists as their arguments, but they actually accepted
anything and returned false. That has been changed so that the functions
cause an exception if one or both arguments are not lists.
Also, the string:strip/3 function is documented to take a character argument
that is a character to strip from one or both ends of the string. Given a list
instead of a character, it used to do nothing, but will now cause an
exception.
Dialyzer will find most cases where those functions are passed arguments of
the wrong type.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6295

 STDLIB 1.14.1

 Fixed Bugs and Malfunctions

	The functions c:y/1,2 which call yecc:file/1,2 are now listed by
c:help/0.
Documentation of c:y/1,2 has been added to c.
The fact that the control sequence character s recognizes binaries and deep
character lists has been documented in io. This feature was added in
R11B-0 (OTP-5403).
Own Id: OTP-6140

	The shell command rr() sometimes failed to read record definitions from
file(s). This problem has been fixed.
Own Id: OTP-6166 Aux Id: OTP-5878

	The nonlocal function handler in erl_eval, which is used for implementing
the restricted mode of the Erlang shell, did not handle calls to
erlang:apply/3 correctly. This bug has been fixed.
Own Id: OTP-6169 Aux Id: seq10374

	ets:rename/1 could deadlock, or crash the SMP emulator when the table wasn't a
named table.
ets:next/2, and ets:prev/2 could return erroneous results on the SMP emulator.
Own Id: OTP-6198 Aux Id: seq10392, seq10415

	When closing a Dets table the space management data was sometimes saved in
such a way that opening the table could not be done without repairing the
file. This bug has been fixed.
Own Id: OTP-6206

 STDLIB 1.14

 Fixed Bugs and Malfunctions

	A bugfix in QLC: two of the call-back functions used for implementing QLC
tables, TraverseFun and LookupFun, are now allowed to return a term other
than a list. Such a term is immediately returned as the results of the current
query, and is useful mostly for returning error tuples.
Several other minor bugs have been also been fixed.
Own Id: OTP-5195

	The STDLIB modules error_logger_file_h and error_logger_tty_h now read the
environment variable utc_log from the SASL application.
Own Id: OTP-5535

	ets:info/1 has been corrected to behave according to the documentation and
return a list of tuples, not a tuple with tuples.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5639

	Referencing a so far undeclared record from the default value of some record
declaration is from now on considered an error by the linter. It is also an
error if the default value of a record declaration uses or binds a variable.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5878

	When a file .hrl file is included using -include_lib, the include path is
temporarily updated to include the directory the .hrl file was found in,
which will allow that .hrl file to itself include files from the same
directory as itself using -include. (Thanks to Richard Carlsson.)
Own Id: OTP-5944

	Corrected filelib:ensure_dir/1 which sometimes returned true and sometimes
ok to always return ok when successful. This goes against the
documentation which said true, but ok was judged to be a more logical
return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5960 Aux Id: seq10240

	The shell now handles records better when used in calls on the form
{Module, Function}(ArgList).
Own Id: OTP-5990 Aux Id: OTP-5876

	The functions lists:ukeysort/2 and lists:ukeymerge/3 have been changed in
such a way that two tuples are considered equal if their keys match.
For the sake of consistency, lists:usort/2 and lists:umerge/3 have been
modified too: two elements are considered equal if they compare equal.
The file_sorter module has been modified in a similar way: the unique
option now applies to the key (keysort() and keymerge()) and the ordering
function (the option {order, Order}).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6019

	Correction in documentation for ets:update_counter/3; failure with badarg
also if the counter to be updated is the key.
Own Id: OTP-6072

	When sorting terms using the file_sorter module and an ordering fun, the
sort was not always stable. This bug has been fixed.
Own Id: OTP-6088

 Improvements and New Features

	Improvements of the linter:
	The compile attribute is recognized after function definitions.
	The new compiler option nowarn_deprecated_function can be used for turning
off warnings for calls to deprecated functions.
	The new compiler option {nowarn_unused_function,[{Name,Arity}]} turns off
warnings for unused local functions for the mentioned functions. The new
options {nowarn_deprecated_function,[{Module,Name,Arity}]} and
{nowarn_bif_clash,[{Name,Arity}]} work similarly.

The Erlang code preprocessor epp now recognizes the file attribute. This
attribute is meant to be used by tools such as Yecc that generate source code
files.
Own Id: OTP-5362

	The formatting option ~s of io:fwrite and io_lib:fwrite has been
extended to handle arguments that are binaries or I/O lists.
Own Id: OTP-5403

	The control sequences p and P of the Format argument of the functions
io:format/2,3 and io_lib:format/2 have been changed as to display the
contents of binaries containing printable characters as strings.
Own Id: OTP-5485

	The linter emits warnings for functions exported more than once in export
attributes.
Own Id: OTP-5494

	A manual for STDLIB has been added, stdlib(6). It mentions the configuration
parameters for the Erlang shell.
Own Id: OTP-5530

	Added the zip module with functions for reading and creating zip archives.
See zip.
Own Id: OTP-5786

	Simple-one-for-one supervisors now store the pids of child processes using
dict instead of a list. This significantly improves performance when there
are many dynamic supervised child processes. (Thanks to Mickaël Rémond et al.)
Own Id: OTP-5898

	When given the new option 'strict_record_tests', the compiler will generate
code that verifies the record type for 'R#record.field' operations in
guards. Code that verifies record types in bodies has already been generated
since R10B, but in this release there will be a '{badrecord,RecordTag}'
instead of a 'badmatch' if the record verification test fails. See the
documentation for the compile module for more information.
The Erlang shell always applies strict record tests.
Own Id: OTP-5915 Aux Id: OTP-5714

	The Erlang pretty printer (erl_pp) now tries to insert line breaks at
appropriate places.
Own Id: OTP-5924

	The public option has been removed from digraph:new/1. The reason is that
several functions in the digraph module are implemented using multiple ETS
accesses, which is not thread safe. (Thanks to Ulf Wiger.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5985

	The function lists:keyreplace/4 checks that the fourth argument (NewTuple)
is a tuple.
Own Id: OTP-6023

	Added an example of how to reconstruct source code from debug info (abstract
code) to beam_lib. (Thanks to Mats Cronqvist who wrote the example.)
Own Id: OTP-6073

	The new compiler option warn_unused_record is used for finding unused
locally defined record types.
Own Id: OTP-6105

 STDLIB 1.13.12

 Fixed Bugs and Malfunctions

	shell_default:xm/1 has been added. It calls xref:m/1.
Own Id: OTP-5405 Aux Id: OTP-4101

	Warnings are output whenever so far undeclared records are referenced from
some default value of a record declaration. In STDLIB 1.14 (R11B) such forward
references will cause a compilation error.
Own Id: OTP-5878

	The linter's check of the deprecated attribute did not take the compile
option export_all into account. This bug has been fixed.
Own Id: OTP-5917

	The Erlang pretty printer did not handle try/catch correctly. This bug has
been fixed.
Own Id: OTP-5926

	Corrected documentation for lists:nthtail/3.
Added documentation for lists:keymap/3.
Tried to clarify some other type declarations and function descriptions in
lists.
Corrected documentation for timer:now_diff/2.
Fixed broken links in gen_fsm, gen_server, io_lib and lib(3).
Own Id: OTP-5931

	Type checks have been added to functions in lists.erl.
Own Id: OTP-5939

 Improvements and New Features

	The new STDLIB module erl_expand_records expands records in abstract code.
It is used by the Erlang shell, which means that Compiler is no longer used by
the shell.
Own Id: OTP-5876 Aux Id: OTP-5435

	The compiler will now warn that the megaco:format_versions/1 function is
deprecated.
Own Id: OTP-5976

 STDLIB 1.13.11

 Fixed Bugs and Malfunctions

	When calling gen_server:enter_loop with a registered server name, it was
only checked that the registered name existed, not that it actually was the
name of the calling process.
Own Id: OTP-5854

 Improvements and New Features

	More detail on beam_lib:version/1 in documentation.
Own Id: OTP-5789

	The new function io:read/3 works like io:read/1,2 but takes a third
argument, StartLine.
Own Id: OTP-5813

	The new function gen_fsm:enter_loop/4,5,6, similar to
gen_server:enter_loop/3,4,5, has been added.
Own Id: OTP-5846 Aux Id: seq10163

	The function c:i/1 is now exported.
Own Id: OTP-5848 Aux Id: seq10164

 STDLIB 1.13.10

 Fixed Bugs and Malfunctions

	A couple of type errors have been fixed in sofs.
Own Id: OTP-5739

	The pre-processor used to complain that the macro definition
'-define(S(S), ??S).' was circular, which it isn't. (Thanks to Richard
Carlsson.)
Own Id: OTP-5777

 STDLIB 1.13.9

 Fixed Bugs and Malfunctions

	The linter, QLC and the module erl_pp did not handle the new 'fun M:F/A'
construct in all situations. This problem has been fixed.
Own Id: OTP-5644

 Improvements and New Features

	The manual pages for most of the Kernel and some of the STDLIB modules have
been updated, in particular regarding type definitions.
The documentation of the return value for erts:info/1 has been corrected.
The documentation for erlang:statistics/1 now lists all possible arguments.
Own Id: OTP-5360

	Replaced some tuple funs with the new fun M:F/A construct.
The high-order functions in the lists module no longer accept bad funs under
any circumstances. 'lists:map(bad_fun, [])' used to return '[]' but now
causes an exception.
Unused, broken compatibility code in the ets module was removed. (Thanks to
Dialyzer.)
Eliminated 5 discrepancies found by Dialyzer in the Appmon application.
Own Id: OTP-5633

	The c:i/0 function will now run in a paged mode if there are more than 100
processes in the system. (Thanks to Ulf Wiger.)
erlang:system_info(process_count) has been optimized and does now return
exactly the same value as length(processes()). Previously
erlang:system_info(process_count) did not include exiting processes which
are included in length(processes()).
The +P flag for erl, which sets the maximum number of processes allowed to
exist at the same, no longer accepts values higher than 134217727. (You will
still probably run out of memory before you'll be able to reach that limit.)
Own Id: OTP-5645 Aux Id: seq9984

 STDLIB 1.13.8

 Fixed Bugs and Malfunctions

	Very minor corrections in beam_lib and its documentation.
Own Id: OTP-5589

 Improvements and New Features

	The erlang:port_info/1 BIF is now documented. Minor corrections of the
documentation for erlang:port_info/2.
Added a note to the documentation of the math module that all functions are
not available on all platforms.
Added more information about the '+c' option in the erl man page in the
ERTS documentation.
Own Id: OTP-5555

	The new fun M:F/A construct creates a fun that refers to the latest version
of M:F/A. This syntax is meant to replace tuple funs {M,F} which have many
problems.
The new type test is_function(Fun,A) (which may be used
in guards) test whether Fun is a fun that can be applied with A arguments.
(Currently, Fun can also be a tuple fun.)
Own Id: OTP-5584

 STDLIB 1.13.7

 Fixed Bugs and Malfunctions

	filelib:wildcard/2 was broken (it ignored its second argument).
Also, filelib:wildcard("Filename") (where the argument does not contain any
meta-characters) would always return ["Filename"]. Corrected so that an
empty list will be returned if "Filename" does not actually exist. (Same
correction in filelib:wildcard/2.) (This change is a slight
incompatibility.)
filelib:wildcard/1,2 will generate a different exception when given bad
patterns such as "{a,". The exception used to be caused by
'exit(missing_delimiter)' but is now
'erlang:error({badpattern,missing_delimiter})'.
Own Id: OTP-5523 Aux Id: seq9824

 Improvements and New Features

	Further improvements of encrypted debug info: New option encrypt_debug_info
for compiler.
Own Id: OTP-5541 Aux Id: seq9837

 STDLIB 1.13.6

 Fixed Bugs and Malfunctions

	When opening a Dets table read only an attempt was sometimes made to re-hash
the table resulting in an error message. This problem has been fixed.
Own Id: OTP-5487 Aux Id: OTP-4989

 Improvements and New Features

	It is now possible to encrypt the debug information in Beam files, to help
keep the source code secret. See the documentation for compile on how to
provide the key for encrypting, and the documentation for beam_lib on how to
provide the key for decryption so that tools such as the Debugger, Xref, or
Cover can be used.
The beam_lib:chunks/2 functions now accepts an additional chunk type
compile_info to retrieve the compilation information directly as a term.
(Thanks to Tobias Lindahl.)
Own Id: OTP-5460 Aux Id: seq9787

 STDLIB 1.13.5

 Fixed Bugs and Malfunctions

	Closing a Dets table kept in RAM would cause a crash if the file could not be
written. This problem has been fixed by returning an error tuple.
Own Id: OTP-5402

	erl_pp now correctly pretty-prints fun F/A.
Own Id: OTP-5412

	The Erlang shell failed if the compiler was not in the code path. This problem
has been fixed, but in order to evaluate records the compiler is still needed.
Own Id: OTP-5435

	Corrected the example in the documentation for ets:match/2. Also clarified
that ets:update_counter/3 updates the counter atomically. (Thanks to Anders
Svensson.)
Own Id: OTP-5452 Aux Id: seq9770, seq9789

 Improvements and New Features

	The possibility to start the Erlang shell in parallel with the rest of the
system was reintroduced for backwards compatibility in STDLIB 1.13.1. The flag
to be used for this is now called async_shell_start and has been documented.
New shells started from the JCL menu are not synchronized with init anymore.
This makes it possible to start a new shell (e.g. for debugging purposes) even
if the initial shell has not come up.
Own Id: OTP-5406 Aux Id: OTP-5218

	The compiler will now produce warnings when using the deprecated functions in
the snmp module.
Own Id: OTP-5425

	The function c:zi/0 has been removed. Use c:i/0 instead.
Own Id: OTP-5432

	Corrected two minor bugs found by the Dialyzer: Calling a parameterized module
from a restricted shell (i.e. if shell:start_restricted/1 has been used)
would crash the shell evaluator. A debug printout in gen_fsm had a clause
that would never match; causing less information to be printed.
And a somewhat more serious one also found by Dialyzer: rpc:yield/1 would
crash unless the call started by rpc:async_call/4 had already finished;
rpc:nb_yield(Key,infinity) would also crash.
Cleaned up and removed redundant code found by Dialyzer in
erlang:dmonitor_p/2.
Own Id: OTP-5462

 STDLIB 1.13.4

 Fixed Bugs and Malfunctions

	Bugs in the Erlang shell have been fixed.
Own Id: OTP-5327

	Some dead code reported by Dialyzer was eliminated.
A bug in dbg when tracing to wrap trace files has been corrected. It failed
to delete any already existing wrap trace files with the same names when
starting a new wrap trace.
Own Id: OTP-5329

	The linter could output invalid warnings about bit patterns in record
initializations. This problem has been fixed.
Own Id: OTP-5338

	ordsets:is_set(NoList), where NoList is any term except a list, would
crash. For consistency with sets:is_set/1 and gb_sets:is_set/1, it now
returns false.
Own Id: OTP-5341

	A BIF erlang:raise/3 has been added. See the manual for details. It is
intended for internal system programming only, advanced error handling.
Own Id: OTP-5376 Aux Id: OTP-5257

 Improvements and New Features

	The deprecated attribute is now checked by the linter. See xref for a
description of the deprecated attribute.
Own Id: OTP-5276

	The restricted shell will now indicate if the return value from a user
predicate is on an incorrect form.
Own Id: OTP-5335

 STDLIB 1.13.3

 Fixed Bugs and Malfunctions

	Bugs concerning unused and shadowed variables have been fixed in the linter.
Own Id: OTP-5091

	A bug in the evaluator that caused the shell to choke on bit syntax
expressions has been fixed.
Own Id: OTP-5237

	io:format/2 et.al no longer crashes for some combinations of precision and
value for format character "g". Previously it crashed if the precision P was 4
or lower and the absolute value of the float to print was lower than 10^4 but
10^(P-1) or higher. Now it will not crash depending on the value of the float.
Own Id: OTP-5263

	Bugs in the handling of the bit syntax have been fixed in the Erlang shell.
Own Id: OTP-5269

	gb_sets:del_element/2 was changed to do the same as gb_sets:delete_any/2
which was the original intention, not as gb_sets:delete/2. Code that relies
on gb_sets:del_element/2 causing an error if the element does not exist must
be changed to call gb_sets:delete/2 instead.
The documentation was also updated to explicitly document functions that were
only referred to as 'aliases' of a documented function. Also, a list of all
functions common to the gb_sets, sets, and ordsets was added.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5277

	Debug messages have been removed from the QLC module.
Own Id: OTP-5283

 Improvements and New Features

	The size of continuations returned from dets:match/1,3,
dets:match_object/1,3, and dets:select/1,3 has been reduced. This affects
the amount of data Mnesia sends between nodes while evaluating QLC queries.
Own Id: OTP-5232

 STDLIB 1.13.2

 Improvements and New Features

	The -rsh switch for starting a remote shell (introduced with OTP-5210)
clashed with an already existing switch used by slave. Therefore the switch
for the remote shell is now instead named -remsh.
Own Id: OTP-5248 Aux Id: OTP-5210

 STDLIB 1.13.1

 Fixed Bugs and Malfunctions

	The Pman 'trace shell' functionality was broken as has now been fixed.
Furthermore, Pman could not correctly find the pid of the active shell if more
than one shell process was running on the node. This has also been corrected.
Own Id: OTP-5191

	When the undocumented feature "parameterized modules" was used, the ?MODULE
macro did not work correctly.
Own Id: OTP-5224

 Improvements and New Features

	You can now start Erlang with the -rsh flag which gives you a remote initial
shell instead of a local one. Example:
 erl -sname this_node -rsh other_node@other_host
Own Id: OTP-5210

	The man page for the lists module has been updated with description of the
new zip, unzip, and partition/2 functions.
Own Id: OTP-5213

	The top level group leader used to be listed as job #1 in the job list in JCL
mode. Since there is no shell associated with this process that can be
connected to, it will no longer be listed.
Own Id: OTP-5214

	The possibility to start the Erlang shell in parallel with the rest of the
system has been reintroduced for backwards compatibility. Note that this old
behaviour is error prone and should not be used unless for some reason
necessary.
Own Id: OTP-5218 Aux Id: seq9534

	The shell commands rr/1,2,3 now accepts wildcards when reading record
definitions from BEAM files.
Own Id: OTP-5226

Introduction

 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense
that the minimal system based on Erlang/OTP consists of STDLIB and Kernel.
STDLIB contains the following functional areas:
	Erlang shell
	Command interface
	Query interface
	Interface to standard Erlang I/O servers
	Interface to the Erlang built-in term storage BIFs
	Regular expression matching functions for strings and binaries
	Finite state machine
	Event handling
	Functions for the server of a client-server relation
	Function to control applications in a distributed manner
	Start and control of slave nodes
	Operations on finite sets and relations represented as sets
	Library for handling binary data
	Disk-based term storage
	List processing
	Maps processing

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

The Erlang I/O Protocol

The I/O protocol in Erlang enables bi-directional communication between clients
and servers.
	The I/O server is a process that handles the requests and performs the
requested task on, for example, an I/O device.
	The client is any Erlang process wishing to read or write data from/to the I/O
device.

The common I/O protocol has been present in OTP since the beginning, but has
been undocumented and has also evolved over the years. In an addendum to Robert
Virding's rationale, the original I/O protocol is described. This section
describes the current I/O protocol.
The original I/O protocol was simple and flexible. Demands for memory efficiency
and execution time efficiency have triggered extensions to the protocol over the
years, making the protocol larger and somewhat less easy to implement than the
original. It can certainly be argued that the current protocol is too complex,
but this section describes how it looks today, not how it should have looked.
The basic ideas from the original protocol still hold. The I/O server and client
communicate with one single, rather simplistic protocol and no server state is
ever present in the client. Any I/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the
I/O server communicates with.

 Protocol Basics

As described in Robert's paper, I/O servers and clients communicate using
io_request/io_reply tuples as follows:
{io_request, From, ReplyAs, Request}
{io_reply, ReplyAs, Reply}
The client sends an io_request tuple to the I/O server and the server
eventually sends a corresponding io_reply tuple.
	From is the pid/0 of the client, the process which the I/O server sends
the I/O reply to.

	ReplyAs can be any datum and is returned in the corresponding io_reply.
The io module monitors the I/O server and uses the monitor reference as
the ReplyAs datum. A more complicated client can have many outstanding I/O
requests to the same I/O server and can use different references (or something
else) to differentiate among the incoming I/O replies. Element ReplyAs is to
be considered opaque by the I/O server.
Notice that the pid/0 of the I/O server is not explicitly present in tuple
io_reply. The reply can be sent from any process, not necessarily the actual
I/O server.

	Request and Reply are described below.

When an I/O server receives an io_request tuple, it acts upon the Request
part and eventually sends an io_reply tuple with the corresponding Reply
part.

 Output Requests

To output characters on an I/O device, the following Requests exist:
{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}
	Encoding is unicode or latin1, meaning that the characters are (in case
of binaries) encoded as UTF-8 or ISO Latin-1 (pure bytes). A well-behaved I/O
server is also to return an error indication if list elements contain
integers > 255 when Encoding is set to latin1.
Notice that this does not in any way tell how characters are to be put on the
I/O device or handled by the I/O server. Different I/O servers can handle the
characters however they want, this only tells the I/O server which format the
data is expected to have. In the Module/Function/Args case, Encoding
tells which format the designated function produces.
Notice also that byte-oriented data is simplest sent using the ISO Latin-1
encoding.

	Characters are the data to be put on the I/O device. If Encoding is
latin1, this is an iolist/0. If Encoding is unicode, this is an
Erlang standard mixed Unicode list (one integer in a list per character,
characters in binaries represented as UTF-8).

	Module, Function, and Args denote a function that is called to produce
the data (like io_lib:format/2).
Args is a list of arguments to the function. The function is to produce data
in the specified Encoding. The I/O server is to call the function as
apply(Mod, Func, Args) and put the returned data on the I/O
device as if it was sent in a {put_chars, Encoding, Characters} request. If
the function returns anything else than a binary or list, or throws an
exception, an error is to be sent back to the client.

The I/O server replies to the client with an io_reply tuple, where element
Reply is one of:
ok
{error, Error}
	Error describes the error to the client, which can do whatever it wants with
it. The io module typically returns it "as is".

 Input Requests

To read characters from an I/O device, the following Requests exist:
{get_until, Encoding, Prompt, Module, Function, ExtraArgs}
	Encoding denotes how data is to be sent back to the client and what data is
sent to the function denoted by Module/Function/ExtraArgs. If the
function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no
conversion can be done, and it is up to the client-supplied function to return
data in a proper way.
If Encoding is latin1, lists of integers 0..255 or binaries containing
plain bytes are sent back to the client when possible. If Encoding is
unicode, lists with integers in the whole Unicode range or binaries encoded
in UTF-8 are sent to the client. The user-supplied function always sees lists
of integers, never binaries, but the list can contain numbers > 255 if
Encoding is unicode.

	Prompt is a list of characters (not mixed, no binaries) or an atom to be
output as a prompt for input on the I/O device. Prompt is often ignored by
the I/O server; if set to '', it is always to be ignored (and results in
nothing being written to the I/O device).

	Module, Function, and ExtraArgs denote a function and arguments to
determine when enough data is written. The function is to take two more
arguments, the last state, and a list of characters. The function is to return
one of:
{done, Result, RestChars}
{more, Continuation}
Result can be any Erlang term, but if it is a list/0, the I/O server can
convert it to a binary/0 of appropriate format before returning it to the
client, if the I/O server is set in binary mode (see below).
The function is called with the data the I/O server finds on its I/O device,
returning one of:
	{done, Result, RestChars} when enough data is read. In this case Result
is sent to the client and RestChars is kept in the I/O server as a buffer
for later input.
	{more, Continuation}, which indicates that more characters are needed to
complete the request.

Continuation is sent as the state in later calls to the function when more
characters are available. When no more characters are available, the function
must return {done, eof, Rest}. The initial state is the empty list. The data
when an end of file is reached on the IO device is the atom eof.
An emulation of the get_line request can be (inefficiently) implemented
using the following functions:
-module(demo).
-export([until_newline/3, get_line/1]).

until_newline(_ThisFar,eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
 {L,[]} ->
 {more,ThisFar++L};
 {L2,[MyStopCharacter|Rest]} ->
 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

get_line(IoServer) ->
 IoServer ! {io_request,
 self(),
 IoServer,
 {get_until, unicode, '', ?MODULE, until_newline, [$\n]}},
 receive
 {io_reply, IoServer, Data} ->
 Data
 end.
Notice that the last element in the Request tuple ([$\n]) is appended to
the argument list when the function is called. The function is to be called
like apply(Module, Function, [State, Data | ExtraArgs]) by
the I/O server.

A fixed number of characters is requested using the following Request:
{get_chars, Encoding, Prompt, N}
	Encoding and Prompt as for get_until.
	N is the number of characters to be read from the I/O device.

A single line (as in former example) is requested with the following Request:
{get_line, Encoding, Prompt}
	Encoding and Prompt as for get_until.

Clearly, get_chars and get_line could be implemented with the get_until
request (and indeed they were originally), but demands for efficiency have made
these additions necessary.
The I/O server replies to the client with an io_reply tuple, where element
Reply is one of:
Data
eof
{error, Error}
	Data is the characters read, in list or binary form (depending on the I/O
server mode, see the next section).
	eof is returned when input end is reached and no more data is available to
the client process.
	Error describes the error to the client, which can do whatever it wants with
it. The io module typically returns it as is.

 I/O Server Modes

Demands for efficiency when reading data from an I/O server has not only lead to
the addition of the get_line and get_chars requests, but has also added the
concept of I/O server options. No options are mandatory to implement, but all
I/O servers in the Erlang standard libraries honor the binary option, which
allows element Data of the io_reply tuple to be a binary instead of a list
when possible. If the data is sent as a binary, Unicode data is sent in the
standard Erlang Unicode format, that is, UTF-8 (notice that the function of the
get_until request still gets list data regardless of the I/O server mode).
Notice that the get_until request allows for a function with the data
specified as always being a list. Also, the return value data from such a
function can be of any type (as is indeed the case when an
io:fread/2,3 request is sent to an I/O server). The client
must be prepared for data received as answers to those requests to be in various
forms. However, the I/O server is to convert the results to binaries whenever
possible (that is, when the function supplied to get_until returns a list).
This is done in the example in section
An Annotated and Working Example I/O Server.
An I/O server in binary mode affects the data sent to the client, so that it
must be able to handle binary data. For convenience, the modes of an I/O server
can be set and retrieved using the following I/O requests:
{setopts, Opts}
	Opts is a list of options in the format recognized by the proplists
module (and by the I/O server).

As an example, the I/O server for the interactive shell (in group.erl)
understands the following options:
{binary, boolean()} (or binary/list)
{echo, boolean()}
{expand_fun, fun()}
{encoding, unicode/latin1} (or unicode/latin1)
Options binary and encoding are common for all I/O servers in OTP, while
echo and expand are valid only for this I/O server. Option unicode
notifies how characters are put on the physical I/O device, that is, if the
terminal itself is Unicode-aware. It does not affect how characters are sent in
the I/O protocol, where each request contains encoding information for the
provided or returned data.
The I/O server is to send one of the following as Reply:
ok
{error, Error}
An error (preferably enotsup) is to be expected if the option is not supported
by the I/O server (like if an echo option is sent in a setopts request to a
plain file).
To retrieve options, the following request is used:
getopts
This request asks for a complete list of all options supported by the I/O server
as well as their current values.
The I/O server replies:
OptList
{error, Error}
	OptList is a list of tuples {Option, Value}, where Option always is an
atom.

 Multiple I/O Requests

The Request element can in itself contain many Requests by using the
following format:
{requests, Requests}
	Requests is a list of valid io_request tuples for the protocol. They must
be executed in the order that they appear in the list. The execution is to
continue until one of the requests results in an error or the list is
consumed. The result of the last request is sent back to the client.

The I/O server can, for a list of requests, send any of the following valid
results in the reply, depending on the requests in the list:
ok
{ok, Data}
{ok, Options}
{error, Error}

 Optional I/O Request

The following I/O request is optional to implement and a client is to be
prepared for an error return:
{get_geometry, Geometry}
	Geometry is the atom rows or the atom columns.

The I/O server is to send one of the following as Reply:
N
{error, Error}
	N is the number of character rows or columns that the I/O device has, if
applicable to the I/O device handled by the I/O server, otherwise
{error, enotsup} is a good answer.

 Unimplemented Request Types

If an I/O server encounters a request that it does not recognize (that is, the
io_request tuple has the expected format, but the Request is unknown), the
I/O server is to send a valid reply with the error tuple:
{error, request}
This makes it possible to extend the protocol with optional requests and for the
clients to be somewhat backward compatible.

 An Annotated and Working Example I/O Server

An I/O server is any process capable of handling the I/O protocol. There is no
generic I/O server behavior, but could well be. The framework is simple, a
process handling incoming requests, usually both I/O-requests and other I/O
device-specific requests (positioning, closing, and so on).
The example I/O server stores characters in an ETS table, making up a fairly
crude RAM file.
The module begins with the usual directives, a function to start the I/O server
and a main loop handling the requests:
-module(ets_io_server).

-export([start_link/0, init/0, loop/1, until_newline/3, until_enough/3]).

-define(CHARS_PER_REC, 10).

-record(state, {
	 table,
	 position, % absolute
	 mode % binary | list
	 }).

start_link() ->
 spawn_link(?MODULE,init,[]).

init() ->
 Table = ets:new(noname,[ordered_set]),
 ?MODULE:loop(#state{table = Table, position = 0, mode=list}).

loop(State) ->
 receive
	{io_request, From, ReplyAs, Request} ->
	 case request(Request,State) of
		{Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->
		 reply(From, ReplyAs, Reply),
		 ?MODULE:loop(NewState);
		{stop, Reply, _NewState} ->
		 reply(From, ReplyAs, Reply),
		 exit(Reply)
	 end;
	%% Private message
	{From, rewind} ->
	 From ! {self(), ok},
	 ?MODULE:loop(State#state{position = 0});
	_Unknown ->
	 ?MODULE:loop(State)
 end.
The main loop receives messages from the client (which can use the the io
module to send requests). For each request, the function request/2 is called
and a reply is eventually sent using function reply/3.
The "private" message {From, rewind} results in the current position in the
pseudo-file to be reset to 0 (the beginning of the "file"). This is a typical
example of I/O device-specific messages not being part of the I/O protocol. It
is usually a bad idea to embed such private messages in io_request tuples, as
that can confuse the reader.
First, we examine the reply function:
reply(From, ReplyAs, Reply) ->
 From ! {io_reply, ReplyAs, Reply}.
It sends the io_reply tuple back to the client, providing element ReplyAs
received in the request along with the result of the request, as described
earlier.
We need to handle some requests. First the requests for writing characters:
request({put_chars, Encoding, Chars}, State) ->
 put_chars(unicode:characters_to_list(Chars,Encoding),State);
request({put_chars, Encoding, Module, Function, Args}, State) ->
 try
	request({put_chars, Encoding, apply(Module, Function, Args)}, State)
 catch
	: ->
	 {error, {error,Function}, State}
 end;
The Encoding says how the characters in the request are represented. We want
to store the characters as lists in the ETS table, so we convert them to lists
using function unicode:characters_to_list/2. The conversion function
conveniently accepts the encoding types unicode and latin1, so we can use
Encoding directly.
When Module, Function, and Arguments are provided, we apply it and do the
same with the result as if the data was provided directly.
We handle the requests for retrieving data:
request({get_until, Encoding, _Prompt, M, F, As}, State) ->
 get_until(Encoding, M, F, As, State);
request({get_chars, Encoding, _Prompt, N}, State) ->
 %% To simplify the code, get_chars is implemented using get_until
 get_until(Encoding, ?MODULE, until_enough, [N], State);
request({get_line, Encoding, _Prompt}, State) ->
 %% To simplify the code, get_line is implemented using get_until
 get_until(Encoding, ?MODULE, until_newline, [$\n], State);
Here we have cheated a little by more or less only implementing get_until and
using internal helpers to implement get_chars and get_line. In production
code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functions put_chars/2 and
get_until/5, we examine the few remaining requests:
request({get_geometry,_}, State) ->
 {error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
 setopts(Opts, State);
request(getopts, State) ->
 getopts(State);
request({requests, Reqs}, State) ->
 multi_request(Reqs, {ok, ok, State});
Request get_geometry has no meaning for this I/O server, so the reply is
{error, enotsup}. The only option we handle is binary/list, which is done
in separate functions.
The multi-request tag (requests) is handled in a separate loop function
applying the requests in the list one after another, returning the last result.
{error, request} must be returned if the request is not recognized:
request(_Other, State) ->
 {error, {error, request}, State}.
Next we handle the different requests, first the fairly generic multi-request
type:
multi_request([R|Rs], {ok, _Res, State}) ->
 multi_request(Rs, request(R, State));
multi_request([_|_], Error) ->
 Error;
multi_request([], Result) ->
 Result.
We loop through the requests one at the time, stopping when we either encounter
an error or the list is exhausted. The last return value is sent back to the
client (it is first returned to the main loop and then sent back by function
io_reply).
Requests getopts and setopts are also simple to handle. We only change or
read the state record:
setopts(Opts0,State) ->
 Opts = proplists:unfold(
	 proplists:substitute_negations(
	 [{list,binary}],
	 Opts0)),
 case check_valid_opts(Opts) of
	true ->
	 case proplists:get_value(binary, Opts) of
		 true ->
			{ok,ok,State#state{mode=binary}};
		 false ->
			{ok,ok,State#state{mode=binary}};
		 _ ->
			{ok,ok,State}
		end;
	false ->
	 {error,{error,enotsup},State}
 end.
check_valid_opts([]) ->
 true;
check_valid_opts([{binary,Bool}|T]) when is_boolean(Bool) ->
 check_valid_opts(T);
check_valid_opts(_) ->
 false.

getopts(#state{mode=M} = S) ->
 {ok,[{binary, case M of
		 binary ->
			 true;
		 _ ->
			 false
		 end}],S}.
As a convention, all I/O servers handle both {setopts, [binary]},
{setopts, [list]}, and {setopts,[{binary, boolean()}]}, hence the trick with
proplists:substitute_negations/2 and proplists:unfold/1. If invalid options
are sent to us, we send {error, enotsup} back to the client.
Request getopts is to return a list of {Option, Value} tuples. This has the
twofold function of providing both the current values and the available options
of this I/O server. We have only one option, and hence return that.
So far this I/O server is fairly generic (except for request rewind handled in
the main loop and the creation of an ETS table). Most I/O servers contain code
similar to this one.
To make the example runnable, we start implementing the reading and writing of
the data to/from the ETS table. First function put_chars/3:
put_chars(Chars, #state{table = T, position = P} = State) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 [apply_update(T,U) || U <- split_data(Chars, R, C)],
 {ok, ok, State#state{position = (P + length(Chars))}}.
We already have the data as (Unicode) lists and therefore only split the list in
runs of a predefined size and put each run in the table at the current position
(and forward). Functions split_data/3 and apply_update/2 are implemented
below.
Now we want to read data from the table. Function get_until/5 reads data and
applies the function until it says that it is done. The result is sent back to
the client:
get_until(Encoding, Mod, Func, As,
	 #state{position = P, mode = M, table = T} = State) ->
 case get_loop(Mod,Func,As,T,P,[]) of
	{done,Data,_,NewP} when is_binary(Data); is_list(Data) ->
	 if
		M =:= binary ->
		 {ok,
		 unicode:characters_to_binary(Data, unicode, Encoding),
		 State#state{position = NewP}};
		true ->
		 case check(Encoding,
		 unicode:characters_to_list(Data, unicode))
 of
			{error, _} = E ->
			 {error, E, State};
			List ->
			 {ok, List,
			 State#state{position = NewP}}
		 end
	 end;
	{done,Data,_,NewP} ->
	 {ok, Data, State#state{position = NewP}};
	Error ->
	 {error, Error, State}
 end.

get_loop(M,F,A,T,P,C) ->
 {NewP,L} = get(P,T),
 case catch apply(M,F,[C,L|A]) of
	{done, List, Rest} ->
	 {done, List, [], NewP - length(Rest)};
	{more, NewC} ->
	 get_loop(M,F,A,T,NewP,NewC);
	_ ->
	 {error,F}
 end.
Here we also handle the mode (binary or list) that can be set by request
setopts. By default, all OTP I/O servers send data back to the client as
lists, but switching mode to binary can increase efficiency if the I/O server
handles it in an appropriate way. The implementation of get_until is difficult
to get efficient, as the supplied function is defined to take lists as
arguments, but get_chars and get_line can be optimized for binary mode.
However, this example does not optimize anything.
It is important though that the returned data is of the correct type depending
on the options set. We therefore convert the lists to binaries in the correct
encoding if possible before returning. The function supplied in the
get_until request tuple can, as its final result return anything, so only
functions returning lists can get them converted to binaries. If the request
contains encoding tag unicode, the lists can contain all Unicode code points
and the binaries are to be in UTF-8. If the encoding tag is latin1, the client
is only to get characters in the range 0..255. Function check/2 takes care
of not returning arbitrary Unicode code points in lists if the encoding was
specified as latin1. If the function does not return a list, the check cannot
be performed and the result is that of the supplied function untouched.
To manipulate the table we implement the following utility functions:
check(unicode, List) ->
 List;
check(latin1, List) ->
 try
	[throw(not_unicode) || X <- List,
				X > 255],
	List
 catch
	throw:_ ->
	 {error,{cannot_convert, unicode, latin1}}
 end.
The function check provides an error tuple if Unicode code points > 255 are to
be returned if the client requested latin1.
The two functions until_newline/3 and until_enough/3 are helpers used
together with function get_until/5 to implement get_chars and get_line
(inefficiently):
until_newline([],eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,eof,_MyStopCharacter) ->
 {done,ThisFar,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
	{L,[]} ->
 {more,ThisFar++L};
	{L2,[MyStopCharacter|Rest]} ->
	 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

until_enough([],eof,_N) ->
 {done,eof,[]};
until_enough(ThisFar,eof,_N) ->
 {done,ThisFar,[]};
until_enough(ThisFar,CharList,N)
 when length(ThisFar) + length(CharList) >= N ->
 {Res,Rest} = my_split(N,ThisFar ++ CharList, []),
 {done,Res,Rest};
until_enough(ThisFar,CharList,_N) ->
 {more,ThisFar++CharList}.
As can be seen, the functions above are just the type of functions that are to
be provided in get_until requests.
To complete the I/O server, we only need to read and write the table in an
appropriate way:
get(P,Tab) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 case ets:lookup(Tab,R) of
	[] ->
	 {P,eof};
	[{R,List}] ->
	 case my_split(C,List,[]) of
		{_,[]} ->
		 {P+length(List),eof};
		{_,Data} ->
		 {P+length(Data),Data}
	 end
 end.

my_split(0,Left,Acc) ->
 {lists:reverse(Acc),Left};
my_split(_,[],Acc) ->
 {lists:reverse(Acc),[]};
my_split(N,[H|T],Acc) ->
 my_split(N-1,T,[H|Acc]).

split_data([],_,_) ->
 [];
split_data(Chars, Row, Col) ->
 {This,Left} = my_split(?CHARS_PER_REC - Col, Chars, []),
 [{Row, Col, This} | split_data(Left, Row + 1, 0)].

apply_update(Table, {Row, Col, List}) ->
 case ets:lookup(Table,Row) of
	[] ->
	 ets:insert(Table,{Row, lists:duplicate(Col,0) ++ List});
	[{Row, OldData}] ->
	 {Part1,_} = my_split(Col,OldData,[]),
	 {_,Part2} = my_split(Col+length(List),OldData,[]),
	 ets:insert(Table,{Row, Part1 ++ List ++ Part2})
 end.
The table is read or written in chunks of ?CHARS_PER_REC, overwriting when
necessary. The implementation is clearly not efficient, it is just working.
This concludes the example. It is fully runnable and you can read or write to
the I/O server by using, for example, the io module or even the file
module. It is as simple as that to implement a fully fledged I/O server in
Erlang.

Using Unicode in Erlang

 Unicode Implementation

Implementing support for Unicode character sets is an ongoing process. The
Erlang Enhancement Proposal (EEP) 10 outlined the basics of Unicode support and
specified a default encoding in binaries that all Unicode-aware modules are to
handle in the future.
Here is an overview what has been done so far:
	The functionality described in EEP10 was implemented in Erlang/OTP R13A.

	Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete
and was by default disabled on platforms where no guarantee was given for the
filename encoding.

	With Erlang/OTP R16A came support for UTF-8 encoded source code, with
enhancements to many of the applications to support both Unicode encoded
filenames and support for UTF-8 encoded files in many circumstances. Most
notable is the support for UTF-8 in files read by file:consult/1, release
handler support for UTF-8, and more support for Unicode character sets in the
I/O system.

	In Erlang/OTP 17.0, the encoding default for Erlang source files was switched
to UTF-8.

	In Erlang/OTP 20.0, atoms and function can contain Unicode characters. Module
names, application names, and node names are still restricted to the ISO
Latin-1 range.
Support was added for normalizations forms in unicode and the string
module now handles utf8-encoded binaries.

This section outlines the current Unicode support and gives some recipes for
working with Unicode data.

 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that
understanding Unicode characters and encodings is not as easy as one would
expect. The complexity of the field and the implications of the standard require
thorough understanding of concepts rarely before thought of.
Also, the Erlang implementation requires understanding of concepts that were
never an issue for many (Erlang) programmers. To understand and use Unicode
characters requires that you study the subject thoroughly, even if you are an
experienced programmer.
As an example, contemplate the issue of converting between upper and lower case
letters. Reading the standard makes you realize that there is not a simple one
to one mapping in all scripts, for example:
	In German, the letter "ß" (sharp s) is in lower case, but the uppercase
equivalent is "SS".
	In Greek, the letter "Σ" has two different lowercase forms, "ς" in word-final
position and "σ" elsewhere.
	In Turkish, both dotted and dotless "i" exist in lower case and upper case
forms.
	Cyrillic "I" has usually no lowercase form.
	Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at a time, but
possibly the whole sentence, the natural language to translate to, the
differences in input and output string length, and so on. Erlang/OTP has
currently no Unicode uppercase/lowercase functionality with language
specific handling, but publicly available libraries address these issues.
Another example is the accented characters, where the same glyph has two
different representations. The Swedish letter "ö" is one example. The Unicode
standard has a code point for it, but you can also write it as "o" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter
is to have "¨" above). They have the same glyph, user perceived character. They
are for most purposes the same, but have different representations. For example,
MacOS X converts all filenames to use Combining Diaeresis, while most other
programs (including Erlang) try to hide that by doing the opposite when, for
example, listing directories. However it is done, it is usually important to
normalize such characters to avoid confusion.
The list of examples can be made long. One need a kind of knowledge that was not
needed when programs only considered one or two languages. The complexity of
human languages and scripts has certainly made this a challenge when
constructing a universal standard. Supporting Unicode properly in your program
will require effort.

 What Unicode Is

Unicode is a standard defining code points (numbers) for all known, living or
dead, scripts. In principle, every symbol used in any language has a Unicode
code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.
Support for Unicode is increasing throughout the world of computing, as the
benefits of one common character set are overwhelming when programs are used in
a global environment. Along with the base of the standard, the code points for
all the scripts, some encoding standards are available.
It is vital to understand the difference between encodings and Unicode
characters. Unicode characters are code points according to the Unicode
standard, while the encodings are ways to represent such code points. An
encoding is only a standard for representation. UTF-8 can, for example, be used
to represent a very limited part of the Unicode character set (for example
ISO-Latin-1) or the full Unicode range. It is only an encoding format.
As long as all character sets were limited to 256 characters, each character
could be stored in one single byte, so there was more or less only one practical
encoding for the characters. Encoding each character in one byte was so common
that the encoding was not even named. With the Unicode system there are much
more than 256 characters, so a common way is needed to represent these. The
common ways of representing the code points are the encodings. This means a
whole new concept to the programmer, the concept of character representation,
which was a non-issue earlier.
Different operating systems and tools support different encodings. For example,
Linux and MacOS X have chosen the UTF-8 encoding, which is backward compatible
with 7-bit ASCII and therefore affects programs written in plain English the
least. Windows supports a limited version of UTF-16, namely all the code planes
where the characters can be stored in one single 16-bit entity, which includes
most living languages.
The following are the most widely spread encodings:
	Bytewise representation - This is not a proper Unicode representation, but
the representation used for characters before the Unicode standard. It can
still be used to represent character code points in the Unicode standard with
numbers < 256, which exactly corresponds to the ISO Latin-1 character set. In
Erlang, this is commonly denoted latin1 encoding, which is slightly
misleading as ISO Latin-1 is a character code range, not an encoding.

	UTF-8 - Each character is stored in one to four bytes depending on code
point. The encoding is backward compatible with bytewise representation of
7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8.
The characters beyond code point 127 are stored in more bytes, letting the
most significant bit in the first character indicate a multi-byte character.
For details on the encoding, the RFC is publicly available.
Notice that UTF-8 is not compatible with bytewise representation for code
points from 128 through 255, so an ISO Latin-1 bytewise representation is
generally incompatible with UTF-8.

	UTF-16 - This encoding has many similarities to UTF-8, but the basic unit
is a 16-bit number. This means that all characters occupy at least two bytes,
and some high numbers four bytes. Some programs, libraries, and operating
systems claiming to use UTF-16 only allow for characters that can be stored in
one 16-bit entity, which is usually sufficient to handle living languages. As
the basic unit is more than one byte, byte-order issues occur, which is why
UTF-16 exists in both a big-endian and a little-endian variant.
In Erlang, the full UTF-16 range is supported when applicable, like in the
unicode module and in the bit syntax.

	UTF-32 - The most straightforward representation. Each character is stored
in one single 32-bit number. There is no need for escapes or any variable
number of entities for one character. All Unicode code points can be stored in
one single 32-bit entity. As with UTF-16, there are byte-order issues. UTF-32
can be both big-endian and little-endian.

	UCS-4 - Basically the same as UTF-32, but without some Unicode semantics,
defined by IEEE, and has little use as a separate encoding standard. For all
normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeable.

Certain number ranges are unused in the Unicode standard and certain ranges are
even deemed invalid. The most notable invalid range is 16#D800-16#DFFF, as the
UTF-16 encoding does not allow for encoding of these numbers. This is possibly
because the UTF-16 encoding standard, from the beginning, was expected to be
able to hold all Unicode characters in one 16-bit entity, but was then extended,
leaving a hole in the Unicode range to handle backward compatibility.
Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character
is not encouraged in other contexts. It is valid though, as the character
"ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify encodings and
byte order for programs where such parameters are not known in advance. BOMs are
more seldom used than expected, but can become more widely spread as they
provide the means for programs to make educated guesses about the Unicode format
of a certain file.

 Areas of Unicode Support

To support Unicode in Erlang, problems in various areas have been addressed.
This section describes each area briefly and more thoroughly later in this
User's Guide.
	Representation - To handle Unicode characters in Erlang, a common
representation in both lists and binaries is needed. EEP (10) and the
subsequent initial implementation in Erlang/OTP R13A settled a standard
representation of Unicode characters in Erlang.

	Manipulation - The Unicode characters need to be processed by the Erlang
program, which is why library functions must be able to handle them. In some
cases functionality has been added to already existing interfaces (as the
string module now can handle strings with any code points). In some cases
new functionality or options have been added (as in the io module, the
file handling, the unicode module, and the bit syntax). Today most modules
in Kernel and STDLIB, as well as the VM are Unicode-aware.

	File I/O - I/O is by far the most problematic area for Unicode. A file is
an entity where bytes are stored, and the lore of programming has been to
treat characters and bytes as interchangeable. With Unicode characters, you
must decide on an encoding when you want to store the data in a file. In
Erlang, you can open a text file with an encoding option, so that you can read
characters from it rather than bytes, but you can also open a file for
bytewise I/O.
The Erlang I/O-system has been designed (or at least used) in a way where you
expect any I/O server to handle any string data. That is, however, no longer
the case when working with Unicode characters. The Erlang programmer must now
know the capabilities of the device where the data ends up. Also, ports in
Erlang are byte-oriented, so an arbitrary string of (Unicode) characters
cannot be sent to a port without first converting it to an encoding of choice.

	Terminal I/O - Terminal I/O is slightly easier than file I/O. The output
is meant for human reading and is usually Erlang syntax (for example, in the
shell). There exists syntactic representation of any Unicode character without
displaying the glyph (instead written as \x{HHH}). Unicode data can
therefore usually be displayed even if the terminal as such does not support
the whole Unicode range.

	Filenames - Filenames can be stored as Unicode strings in different ways
depending on the underlying operating system and file system. This can be
handled fairly easy by a program. The problems arise when the file system is
inconsistent in its encodings. For example, Linux allows files to be named
with any sequence of bytes, leaving to each program to interpret those bytes.
On systems where these "transparent" filenames are used, Erlang must be
informed about the filename encoding by a startup flag. The default is
bytewise interpretation, which is usually wrong, but allows for interpretation
of all filenames.
The concept of "raw filenames" can be used to handle wrongly encoded filenames
if one enables Unicode filename translation (+fnu) on platforms where this
is not the default.

	Source code encoding - The Erlang source code has support for the UTF-8
encoding and bytewise encoding. The default in Erlang/OTP R16B was bytewise
(latin1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can
control the encoding by a comment like the following in the beginning of the
file:
%% -*- coding: utf-8 -*-
This of course requires your editor to support UTF-8 as well. The same comment
is also interpreted by functions like file:consult/1, the release handler,
and so on, so that you can have all text files in your source directories in
UTF-8 encoding.

	The language - Having the source code in UTF-8 also allows you to write
string literals, function names, and atoms containing Unicode characters with
code points > 255. Module names, application names, and node names are still
restricted to the ISO Latin-1 range. Binary literals, where you use type
/utf8, can also be expressed using Unicode characters > 255. Having module
names or application names using characters other than 7-bit ASCII can cause
trouble on operating systems with inconsistent file naming schemes, and can
hurt portability, so it is not recommended.
EEP 40 suggests that the language is also to allow for Unicode characters >
255 in variable names. Whether to implement that EEP is yet to be decided.

 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13
defined to be encoded in the ISO Latin-1 (ISO 8859-1) character set, which is,
code point by code point, a subrange of the Unicode character set.
The standard list encoding for strings was therefore easily extended to handle
the whole Unicode range. A Unicode string in Erlang is a list containing
integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.
Erlang strings in ISO Latin-1 are a subset of Unicode strings.
Only if a string contains code points < 256, can it be directly converted to a
binary by using, for example, erlang:iolist_to_binary/1 or can be sent
directly to a port. If the string contains Unicode characters > 255, an encoding
must be decided upon and the string is to be converted to a binary in the
preferred encoding using
unicode:characters_to_binary/1,2,3.
Strings are not generally lists of bytes, as they were before Erlang/OTP R13,
they are lists of characters. Characters are not generally bytes, they are
Unicode code points.
Binaries are more troublesome. For performance reasons, programs often store
textual data in binaries instead of lists, mainly because they are more compact
(one byte per character instead of two words per character, as is the case with
lists). Using erlang:list_to_binary/1, an ISO Latin-1 Erlang string can be
converted into a binary, effectively using bytewise encoding: one byte per
character. This was convenient for those limited Erlang strings, but cannot be
done for arbitrary Unicode lists.
As the UTF-8 encoding is widely spread and provides some backward compatibility
in the 7-bit ASCII range, it is selected as the standard encoding for Unicode
characters in binaries for Erlang.
The standard binary encoding is used whenever a library function in Erlang is to
handle Unicode data in binaries, but is of course not enforced when
communicating externally. Functions and bit syntax exist to encode and decode
both UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing
with binaries and Unicode in general only deal with the default encoding.
Character data can be combined from many sources, sometimes available in a mix
of strings and binaries. Erlang has for long had the concept of iodata or
iolists, where binaries and lists can be combined to represent a sequence of
bytes. In the same way, the Unicode-aware modules often allow for combinations
of binaries and lists, where the binaries have characters encoded in UTF-8 and
the lists contain such binaries or numbers representing Unicode code points:
unicode_binary() = binary() with characters encoded in UTF-8 coding standard

chardata() = charlist() | unicode_binary()

charlist() = maybe_improper_list(char() | unicode_binary() | charlist(),
 unicode_binary() | nil())
The module unicode even supports similar mixes with binaries containing
other encodings than UTF-8, but that is a special case to allow for conversions
to and from external data:
external_unicode_binary() = binary() with characters coded in a user-specified
 Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external_chardata() = external_charlist() | external_unicode_binary()

external_charlist() = maybe_improper_list(char() | external_unicode_binary() |
 external_charlist(), external_unicode_binary() | nil())

 Basic Language Support

 As from Erlang/OTP R16, Erlang source files can be
written in UTF-8 or bytewise (latin1) encoding. For information about how to
state the encoding of an Erlang source file, see the epp
module. As from Erlang/OTP R16, strings and comments can be written using
Unicode. As from Erlang/OTP 20, also atoms and functions can be written using
Unicode. Modules, applications, and nodes must still be named using characters
from the ISO Latin-1 character set. (These restrictions in the language are
independent of the encoding of the source file.)

 Bit Syntax

The bit syntax contains types for handling binary data in the three main
encodings. The types are named utf8, utf16, and utf32. The utf16 and
utf32 types can be in a big-endian or a little-endian variant:
<<Ch/utf8,_/binary>> = Bin1,
<<Ch/utf16-little,_/binary>> = Bin2,
Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $l/utf32-little,
$o/utf32-little>>,
For convenience, literal strings can be encoded with a Unicode encoding in
binaries using the following (or similar) syntax:
Bin4 = <<"Hello"/utf16>>,

 String and Character Literals

For source code, there is an extension to syntax \OOO (backslash followed by
three octal numbers) and \xHH (backslash followed by x, followed by two
hexadecimal characters), namely \x{H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a
terminating right curly bracket). This allows for entering characters of any
code point literally in a string even when the encoding of the source file is
bytewise (latin1).
In the shell, if using a Unicode input device, or in source code stored in
UTF-8, $ can be followed directly by a Unicode character producing an integer.
In the following example, the code point of a Cyrillic с is output:
7> $с.
1089

 Heuristic String Detection

In certain output functions and in the output of return values in the shell,
Erlang tries to detect string data in lists and binaries heuristically.
Typically you will see heuristic detection in a situation like this:
1> [97,98,99].
"abc"
2> <<97,98,99>>.
<<"abc">>
3> <<195,165,195,164,195,182>>.
<<"åäö"/utf8>>
Here the shell detects lists containing printable characters or binaries
containing printable characters in bytewise or UTF-8 encoding. But what is a
printable character? One view is that anything the Unicode standard thinks is
printable, is also printable according to the heuristic detection. The result is
then that almost any list of integers are deemed a string, and all sorts of
characters are printed, maybe also characters that your terminal lacks in its
font set (resulting in some unappreciated generic output). Another way is to
keep it backward compatible so that only the ISO Latin-1 character set is used
to detect a string. A third way is to let the user decide exactly what Unicode
ranges that are to be viewed as characters.
As from Erlang/OTP R16B you can select the ISO Latin-1 range or the whole
Unicode range by supplying startup flag +pc latin1 or +pc unicode,
respectively. For backward compatibility, latin1 is default. This only
controls how heuristic string detection is done. More ranges are expected to be
added in the future, enabling tailoring of the heuristics to the language and
region relevant to the user.
The following examples show the two startup options:
$ erl +pc latin1
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
[1024]
2> [1070,1085,1080,1082,1086,1076].
[1070,1085,1080,1082,1086,1076]
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
"Ѐ"
2> [1070,1085,1080,1082,1086,1076].
"Юникод"
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"Юникод"/utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>
In the examples, you can see that the default Erlang shell interprets only
characters from the ISO Latin1 range as printable and only detects lists or
binaries with those "printable" characters as containing string data. The valid
UTF-8 binary containing the Russian word "Юникод", is not printed as a string.
When started with all Unicode characters printable (+pc unicode), the shell
outputs anything containing printable Unicode data (in binaries, either UTF-8 or
bytewise encoded) as string data.
These heuristics are also used by io:format/2, io_lib:format/2, and friends
when modifier t is used with ~p or ~P:
$ erl +pc latin1
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}
ok
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<"Юникод"/utf8>>}
ok
Notice that this only affects heuristic interpretation of lists and binaries
on output. For example, the ~ts format sequence always outputs a valid list of
characters, regardless of the +pc setting, as the programmer has explicitly
requested string output.

 The Interactive Shell

The interactive Erlang shell can support Unicode input and output.
On Windows, proper operation requires that a suitable font is installed and
selected for the Erlang application to use. If no suitable font is available on
your system, try installing the DejaVu fonts, which
are freely available, and then select that font in the Erlang shell application.
On Unix-like operating systems, the terminal is to be able to handle UTF-8 on
input and output (this is done by, for example, modern versions of XTerm, KDE
Konsole, and the Gnome terminal) and your locale settings must be proper. As an
example, a LANG environment variable can be set as follows:
$ echo $LANG
en_US.UTF-8
Most systems handle variable LC_CTYPE before LANG, so if that is set, it
must be set to UTF-8:
$ echo $LC_CTYPE
en_US.UTF-8
The LANG or LC_CTYPE setting are to be consistent with what the terminal is
capable of. There is no portable way for Erlang to ask the terminal about its
UTF-8 capacity, we have to rely on the language and character type settings.
To investigate what Erlang thinks about the terminal, the call
io:getopts() can be used when the shell is started:
$ LC_CTYPE=en_US.ISO-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,latin1}
2> q().
ok
$ LC_CTYPE=en_US.UTF-8 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2>
When (finally?) everything is in order with the locale settings, fonts. and the
terminal emulator, you have probably found a way to input characters in the
script you desire. For testing, the simplest way is to add some keyboard
mappings for other languages, usually done with some applet in your desktop
environment.
In a KDE environment, select KDE Control Center (Personal Settings) >
Regional and Accessibility > Keyboard Layout.
On Windows XP, select Control Panel > Regional and Language Options, select
tab Language, and click button Details... in the square named Text Services
and Input Languages.
Your environment probably provides similar means of changing the keyboard
layout. Ensure that you have a way to switch back and forth between keyboards
easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.
Now you are set up for some Unicode input and output. The simplest thing to do
is to enter a string in the shell:
$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2> "Юникод".
"Юникод"
3> io:format("~ts~n", [v(2)]).
Юникод
ok
4>
While strings can be input as Unicode characters, the language elements are
still limited to the ISO Latin-1 character set. Only character constants and
strings are allowed to be beyond that range:
$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> $ξ.
958
2> Юникод.
* 1: illegal character
2>

 Escripts and non-interactive I/O

When Erlang is started without an interactive shell (-noshell, -noinput or
as an escript) the unicode support is identified using environment variables
just as for interactive shells.
Working with unicode in non-interactive sessions works just the same as for
interactive sessions.
In some situations you may need to be able to read and write raw bytes from
standard_io. If that is the case, then you want to set
the standard_io_encoding
configuration parameter to latin1 and use the file API to read and write
data (as explained in
Unicode Data in Files).
In the example below we first read the character ξ from
standard_io and then print the
charlist() represented by it.
#!/usr/bin/env escript
%%! -kernel standard_io_encoding latin1

main(_) ->
 {ok, Char} = file:read_line(standard_io),
 ok = file:write(standard_io, string:trim(Char)),
 ok = file:write(standard_io, io_lib:format(": ~w~n",[string:trim(Char)])),
 ok.
$ escript test.es
ξ
ξ: [206,190]
ξ would normally be represented as the integer 958, but since we are using
bytewise encoding (latin1), it is represented by 206 and 190, which is the
utf-8 bytes representing ξ. When we echo those bytes back to
standard_io, the terminal will see the bytes as utf-8
and show the correct value even though in Erlang we never knew that it was
indeed a unicode string.

 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are
many different ways to do this and Erlang by default treats the different
approaches differently:
	Mandatory Unicode file naming - Windows, Android and, for most cases,
MacOS X enforce Unicode support for filenames. All files created in the file
system have names that can consistently be interpreted. In MacOS X and
Android, all filenames are retrieved in UTF-8 encoding. In Windows, each
system call handling filenames has a special Unicode-aware variant, giving
much the same effect. There are no filenames on these systems that are not
Unicode filenames. So, the default behavior of the Erlang VM is to work in
"Unicode filename translation mode". This means that a filename can be
specified as a Unicode list, which is automatically translated to the proper
name encoding for the underlying operating system and file system.
Doing, for example, a file:list_dir/1 on one of these systems can return
Unicode lists with code points > 255, depending on the content of the file
system.

	Transparent file naming - Most Unix operating systems have adopted a
simpler approach, namely that Unicode file naming is not enforced, but by
convention. Those systems usually use UTF-8 encoding for Unicode filenames,
but do not enforce it. On such a system, a filename containing characters with
code points from 128 through 255 can be named as plain ISO Latin-1 or use
UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do
consistent translation of all filenames.
By default on such systems, Erlang starts in utf8 filename mode if the
terminal supports UTF-8, otherwise in latin1 mode.
In latin1 mode, filenames are bytewise encoded. This allows for list
representation of all filenames in the system. However, a a file named
"Östersund.txt", appears in file:list_dir/1 either as "Östersund.txt" (if
the filename was encoded in bytewise ISO Latin-1 by the program creating the
file) or more probably as [195,150,115,116,101,114,115,117,110,100], which
is a list containing UTF-8 bytes (not what you want). If you use Unicode
filename translation on such a system, non-UTF-8 filenames are ignored by
functions like file:list_dir/1. They can be retrieved with function
file:list_dir_all/1, but wrongly encoded filenames appear as "raw
filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM
operating in Unicode filename translation mode can work with files having names
in any language or character set (as long as it is supported by the underlying
operating system and file system). The Unicode character list is used to denote
filenames or directory names. If the file system content is listed, you also get
Unicode lists as return value. The support lies in the Kernel and STDLIB
modules, which is why most applications (that do not explicitly require the
filenames to be in the ISO Latin-1 range) benefit from the Unicode support
without change.
On operating systems with mandatory Unicode filenames, this means that you more
easily conform to the filenames of other (non-Erlang) applications. You can also
process filenames that, at least on Windows, were inaccessible (because of
having names that could not be represented in ISO Latin-1). Also, you avoid
creating incomprehensible filenames on MacOS X, as the vfs layer of the
operating system accepts all your filenames as UTF-8 does not rewrite them.
For most systems, turning on Unicode filename translation is no problem even if
it uses transparent file naming. Very few systems have mixed filename encodings.
A consistent UTF-8 named system works perfectly in Unicode filename mode. It was
still, however, considered experimental in Erlang/OTP R14B01 and is still not
the default on such systems.
Unicode filename translation is turned on with switch +fnu. On Linux, a VM
started without explicitly stating the filename translation mode defaults to
latin1 as the native filename encoding. On Windows, MacOS X and Android, the
default behavior is that of Unicode filename translation. Therefore
file:native_name_encoding/0 by default returns utf8 on those systems
(Windows does not use UTF-8 on the file system level, but this can safely be
ignored by the Erlang programmer). The default behavior can, as stated earlier,
be changed using option +fnu or +fnl to the VM, see the
erl program. If the VM is started in Unicode filename
translation mode, file:native_name_encoding/0 returns atom utf8. Switch
+fnu can be followed by w, i, or e to control how wrongly encoded
filenames are to be reported.
	w means that a warning is sent to the error_logger whenever a wrongly
encoded filename is "skipped" in directory listings. w is the default.
	i means that wrongly encoded filenames are silently ignored.
	e means that the API function returns an error whenever a wrongly encoded
filename (or directory name) is encountered.

Notice that file:read_link/1 always returns an error if the link points to an
invalid filename.
In Unicode filename mode, filenames given to BIF open_port/2
with option {spawn_executable,...} are also interpreted as Unicode. So is the
parameter list specified in option args available when using
spawn_executable. The UTF-8 translation of arguments can be avoided using
binaries, see section
Notes About Raw Filenames.
Notice that the file encoding options specified when opening a file has nothing
to do with the filename encoding convention. You can very well open files
containing data encoded in UTF-8, but having filenames in bytewise (latin1)
encoding or conversely.
Note
Erlang drivers and NIF-shared objects still cannot be named with names
containing code points > 127. This limitation will be removed in a future
release. However, Erlang modules can, but it is definitely not a good idea and
is still considered experimental.

 Notes About Raw Filenames

Note
Note that raw filenames not necessarily are encoded the same way as on the
OS level.

Raw filenames were introduced together with Unicode filename support in ERTS
5.8.2 (Erlang/OTP R14B01). The reason "raw filenames" were introduced in the
system was to be able to represent filenames, specified in different encodings
on the same system, consistently. It can seem practical to have the VM
automatically translate a filename that is not in UTF-8 to a list of Unicode
characters, but this would open up for both duplicate filenames and other
inconsistent behavior.
Consider a directory containing a file named "björn" in ISO Latin-1, while the
Erlang VM is operating in Unicode filename mode (and therefore expects UTF-8
file naming). The ISO Latin-1 name is not valid UTF-8 and one can be tempted to
think that automatic conversion in, for example, file:list_dir/1 is a good
idea. But what would happen if we later tried to open the file and have the name
as a Unicode list (magically converted from the ISO Latin-1 filename)? The VM
converts the filename to UTF-8, as this is the encoding expected. Effectively
this means trying to open the file named <<"björn"/utf8>>. This file does not
exist, and even if it existed it would not be the same file as the one that was
listed. We could even create two files named "björn", one named in UTF-8
encoding and one not. If file:list_dir/1 would automatically convert the ISO
Latin-1 filename to a list, we would get two identical filenames as the result.
To avoid this, we must differentiate between filenames that are properly encoded
according to the Unicode file naming convention (that is, UTF-8) and filenames
that are invalid under the encoding. By the common function file:list_dir/1,
the wrongly encoded filenames are ignored in Unicode filename translation mode,
but by function file:list_dir_all/1 the filenames with invalid encoding are
returned as "raw" filenames, that is, as binaries.
The file module accepts raw filenames as input.
open_port({spawn_executable, ...} ...) also accepts them. As mentioned
earlier, the arguments specified in the option list to
open_port({spawn_executable, ...} ...) undergo the same conversion as the
filenames, meaning that the executable is provided with arguments in UTF-8 as
well. This translation is avoided consistently with how the filenames are
treated, by giving the argument as a binary.
To force Unicode filename translation mode on systems where this is not the
default was considered experimental in Erlang/OTP R14B01. This was because the
initial implementation did not ignore wrongly encoded filenames, so that raw
filenames could spread unexpectedly throughout the system. As from Erlang/OTP
R16B, the wrongly encoded filenames are only retrieved by special functions
(such as file:list_dir_all/1). Since the impact on existing code is therefore
much lower it is now supported. Unicode filename translation is expected to be
default in future releases.
Even if you are operating without Unicode file naming translation automatically
done by the VM, you can access and create files with names in UTF-8 encoding by
using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding regardless of
the mode the Erlang VM is started in can in some circumstances be a good idea,
as the convention of using UTF-8 filenames is spreading.

 Notes About MacOS X

The vfs layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older
versions did this by refusing to create non-UTF-8 conforming filenames, while
newer versions replace offending bytes with the sequence "%HH", where HH is the
original character in hexadecimal notation. As Unicode translation is enabled by
default on MacOS X, the only way to come up against this is to either start the
VM with flag +fnl or to use a raw filename in bytewise (latin1) encoding. If
using a raw filename, with a bytewise encoding containing characters from 127
through 255, to create a file, the file cannot be opened using the same name as
the one used to create it. There is no remedy for this behavior, except keeping
the filenames in the correct encoding.
MacOS X reorganizes the filenames so that the representation of accents, and so
on, uses the "combining characters". For example, character ö is represented
as code points [111,776], where 111 is character o and 776 is the
special accent character "Combining Diaeresis". This way of normalizing Unicode
is otherwise very seldom used. Erlang normalizes those filenames in the opposite
way upon retrieval, so that filenames using combining accents are not passed up
to the Erlang application. In Erlang, filename "björn" is retrieved as
[98,106,246,114,110], not as [98,106,117,776,114,110], although the file
system can think differently. The normalization into combining accents is redone
when accessing files, so this can usually be ignored by the Erlang programmer.

 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way
as filenames. If Unicode filenames are enabled, environment variables as well as
parameters to the Erlang VM are expected to be in Unicode.
If Unicode filenames are enabled, the calls to os:getenv/0,1,
os:putenv/2, and os:unsetenv/1 handle Unicode strings. On Unix-like
platforms, the built-in functions translate environment variables in UTF-8
to/from Unicode strings, possibly with code points > 255. On Windows, the
Unicode versions of the environment system API are used, and code points > 255
are allowed.
On Unix-like operating systems, parameters are expected to be UTF-8 without
translation if Unicode filenames are enabled.

 Unicode-Aware Modules

Most of the modules in Erlang/OTP are Unicode-unaware in the sense that they
have no notion of Unicode and should not have. Typically they handle non-textual
or byte-oriented data (such as gen_tcp).
Modules handling textual data (such as io_lib and string are sometimes
subject to conversion or extension to be able to handle Unicode characters.
Fortunately, most textual data has been stored in lists and range checking has
been sparse, so modules like string work well for Unicode strings with little
need for conversion or extension.
Some modules are, however, changed to be explicitly Unicode-aware. These modules
include:
	unicode - The unicode module is clearly Unicode-aware. It contains
functions for conversion between different Unicode formats and some utilities
for identifying byte order marks. Few programs handling Unicode data survive
without this module.

	io - The io module has been extended along with the actual I/O
protocol to handle Unicode data. This means that many functions require
binaries to be in UTF-8, and there are modifiers to format control sequences
to allow for output of Unicode strings.

	file, group, user - I/O-servers throughout the system can handle
Unicode data and have options for converting data upon output or input to/from
the device. As shown earlier, the shell module has support for Unicode
terminals and the file module allows for translation to and from various
Unicode formats on disk.
Reading and writing of files with Unicode data is, however, not best done with
the file module, as its interface is byte-oriented. A file opened with a
Unicode encoding (like UTF-8) is best read or written using the io module.

	re - The re module allows for matching Unicode strings as a special
option. As the library is centered on matching in binaries, the Unicode
support is UTF-8-centered.

	wx - The graphical library wx has extensive support for Unicode
text.

The string module works perfectly for Unicode strings and ISO Latin-1
strings, except the language-dependent functions string:uppercase/1 and
string:lowercase/1. These two functions can never function correctly for
Unicode characters in their current form, as there are language and locale
issues to consider when converting text between cases. Converting case in an
international environment is a large subject not yet addressed in OTP.

 Unicode Data in Files

Although Erlang can handle Unicode data in many forms does not automatically
mean that the content of any file can be Unicode text. The external entities,
such as ports and I/O servers, are not generally Unicode capable.
Ports are always byte-oriented, so before sending data that you are not sure is
bytewise-encoded to a port, ensure to encode it in a proper Unicode encoding.
Sometimes this means that only part of the data must be encoded as, for example,
UTF-8. Some parts can be binary data (like a length indicator) or something else
that must not undergo character encoding, so no automatic translation is
present.
I/O servers behave a little differently. The I/O servers connected to terminals
(or stdout) can usually cope with Unicode data regardless of the encoding
option. This is convenient when one expects a modern environment but do not want
to crash when writing to an archaic terminal or pipe.
A file can have an encoding option that makes it generally usable by the io
module (for example {encoding,utf8}), but is by default opened as a
byte-oriented file. The file module is byte-oriented, so only ISO Latin-1
characters can be written using that module. Use the io module if Unicode data
is to be output to a file with other encoding than latin1 (bytewise
encoding). It is slightly confusing that a file opened with, for example,
file:open(Name,[read,{encoding,utf8}]) cannot be properly read using
file:read(File,N), but using the io module to retrieve the Unicode data from
it. The reason is that file:read and file:write (and friends) are purely
byte-oriented, and should be, as that is the way to access files other than text
files, byte by byte. As with ports, you can write encoded data into a file by
"manually" converting the data to the encoding of choice (using the unicode
module or the bit syntax) and then output it on a bytewise (latin1) encoded
file.
Recommendations:
	Use the file module for files opened for bytewise access
({encoding,latin1}).
	Use the io module when accessing files with any other encoding (for
example {encoding,utf8}).

Functions reading Erlang syntax from files recognize the coding: comment and
can therefore handle Unicode data on input. When writing Erlang terms to a file,
you are advised to insert such comments when applicable:
$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> file:write_file("test.term",<<"%% coding: utf-8\n[{\"Юникод\",4711}].\n"/utf8>>).
ok
2> file:consult("test.term").
{ok,[[{"Юникод",4711}]]}

 Summary of Options

The Unicode support is controlled by both command-line switches, some standard
environment variables, and the OTP version you are using. Most options affect
mainly how Unicode data is displayed, not the functionality of the APIs in the
standard libraries. This means that Erlang programs usually do not need to
concern themselves with these options, they are more for the development
environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.
Here follows a summary of the settings affecting Unicode:
	The LANG and LC_CTYPE environment variables - The language setting in
the operating system mainly affects the shell. The terminal (that is, the
group leader) operates with {encoding, unicode} only if the environment
tells it that UTF-8 is allowed. This setting is to correspond to the terminal
you are using.
The environment can also affect filename interpretation, if Erlang is started
with flag +fna (which is default from Erlang/OTP 17.0).
You can check the setting of this by calling io:getopts(),
which gives you an option list containing {encoding,unicode} or
{encoding,latin1}.

	The +pc {unicode|latin1} flag to erl(1) -
This flag affects what is interpreted as string data when doing heuristic
string detection in the shell and in io/
io_lib:format with the "~tp" and ~tP formatting
instructions, as described earlier.
You can check this option by calling io:printable_range/0, which returns
unicode or latin1. To be compatible with future (expected) extensions to
the settings, rather use io_lib:printable_list/1 to check if a list is
printable according to the setting. That function takes into account new
possible settings returned from io:printable_range/0.

	The +fn{l|u|a} [{w|i|e}] flag to
erl(1) - This flag affects how the filenames are to
be interpreted. On operating systems with transparent file naming, this must
be specified to allow for file naming in Unicode characters (and for correct
interpretation of filenames containing characters > 255).
	+fnl means bytewise interpretation of filenames, which was the usual way
to represent ISO Latin-1 filenames before UTF-8 file naming got widespread.
	+fnu means that filenames are encoded in UTF-8, which is nowadays the
common scheme (although not enforced).
	+fna means that you automatically select between +fnl and +fnu, based
on environment variables LANG and LC_CTYPE. This is optimistic
heuristics indeed, nothing enforces a user to have a terminal with the same
encoding as the file system, but this is usually the case. This is the
default on all Unix-like operating systems, except MacOS X.

The filename translation mode can be read with function
file:native_name_encoding/0, which returns latin1 (bytewise encoding) or
utf8.

	epp:default_encoding/0 - This function returns the default encoding for
Erlang source files (if no encoding comment is present) in the currently
running release. In Erlang/OTP R16B, latin1 (bytewise encoding) was
returned. As from Erlang/OTP 17.0, utf8 is returned.
The encoding of each file can be specified using comments as described in the
epp module.

	io:setopts/1,2 and
standard_io_encoding -
When Erlang is started the encoding for standard_io
is by default set to what the
locale settings indicate. You can
override the default by setting the kernel configuration parameter
standard_io_encoding to the
desired encoding.
You can set the encoding of a file or other I/O server with function
io:setopts/2. This can also be set when opening a file.
Setting the terminal (or other standard_io server)
unconditionally to option {encoding,utf8} implies that UTF-8 encoded
characters are written to the device, regardless of how Erlang was started or
the user's environment.
Note
If you use io:setopts/2 to change the encoding of
standard_io the I/O server may already have read
some data using the default encoding. To avoid this you should set the
encoding using
standard_io_encoding.

Opening files with option encoding is convenient when writing or reading
text files in a known encoding.
You can retrieve the encoding setting for an I/O server with function
io:getopts().

 Recipes

When starting with Unicode, one often stumbles over some common issues. This
section describes some methods of dealing with Unicode data.

 Byte Order Marks

A common method of identifying encoding in text files is to put a Byte Order
Mark (BOM) first in the file. The BOM is the code point 16#FEFF encoded in the
same way as the remaining file. If such a file is to be read, the first few
bytes (depending on encoding) are not part of the text. This code outlines how
to open a file that is believed to have a BOM, and sets the files encoding and
position for further sequential reading (preferably using the io module).
Notice that error handling is omitted from the code:
open_bom_file_for_reading(File) ->
 {ok,F} = file:open(File,[read,binary]),
 {ok,Bin} = file:read(F,4),
 {Type,Bytes} = unicode:bom_to_encoding(Bin),
 file:position(F,Bytes),
 io:setopts(F,[{encoding,Type}]),
 {ok,F}.
Function unicode:bom_to_encoding/1 identifies the encoding from a binary of at
least four bytes. It returns, along with a term suitable for setting the
encoding of the file, the byte length of the BOM, so that the file position can
be set accordingly. Notice that function file:position/2 always works on
byte-offsets, so that the byte length of the BOM is needed.
To open a file for writing and place the BOM first is even simpler:
open_bom_file_for_writing(File,Encoding) ->
 {ok,F} = file:open(File,[write,binary]),
 ok = file:write(File,unicode:encoding_to_bom(Encoding)),
 io:setopts(F,[{encoding,Encoding}]),
 {ok,F}.
The file is in both these cases then best processed using the io module, as
the functions in that module can handle code points beyond the ISO Latin-1
range.

 Formatted I/O

When reading and writing to Unicode-aware entities, like a file opened for
Unicode translation, you probably want to format text strings using the
functions in the io module or the io_lib module. For backward
compatibility reasons, these functions do not accept any list as a string, but
require a special translation modifier when working with Unicode texts. The
modifier is t. When applied to control character s in a formatting string,
it accepts all Unicode code points and expects binaries to be in UTF-8:
1> io:format("~ts~n",[<<"åäö"/utf8>>]).
åäö
ok
2> io:format("~s~n",[<<"åäö"/utf8>>]).
Ã¥Ã¤Ã¶
ok
Clearly, the second io:format/2 gives undesired output, as the UTF-8 binary is
not in latin1. For backward compatibility, the non-prefixed control character
s expects bytewise-encoded ISO Latin-1 characters in binaries and lists
containing only code points < 256.
As long as the data is always lists, modifier t can be used for any string,
but when binary data is involved, care must be taken to make the correct choice
of formatting characters. A bytewise-encoded binary is also interpreted as a
string, and printed even when using ~ts, but it can be mistaken for a valid
UTF-8 string. Avoid therefore using the ~ts control if the binary contains
bytewise-encoded characters and not UTF-8.
Function io_lib:format/2 behaves similarly. It is defined to return a deep
list of characters and the output can easily be converted to binary data for
outputting on any device by a simple erlang:list_to_binary/1. When the
translation modifier is used, the list can, however, contain characters that
cannot be stored in one byte. The call to erlang:list_to_binary/1 then fails.
However, if the I/O server you want to communicate with is Unicode-aware, the
returned list can still be used directly:
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io_lib:format("~ts~n", ["Γιούνικοντ"]).
["Γιούνικοντ","\n"]
2> io:put_chars(io_lib:format("~ts~n", ["Γιούνικοντ"])).
Γιούνικοντ
ok
The Unicode string is returned as a Unicode list, which is recognized as such,
as the Erlang shell uses the Unicode encoding (and is started with all Unicode
characters considered printable). The Unicode list is valid input to function
io:put_chars/2, so data can be output on any Unicode-capable device. If the
device is a terminal, characters are output in format \x{H...} if encoding
is latin1. Otherwise in UTF-8 (for the non-interactive terminal: "oldshell" or
"noshell") or whatever is suitable to show the character properly (for an
interactive terminal: the regular shell).
So, you can always send Unicode data to the
standard_io device. Files, however, accept only
Unicode code points beyond ISO Latin-1 if encoding is set to something else
than latin1.

 Heuristic Identification of UTF-8

While it is strongly encouraged that the encoding of characters in binary data
is known before processing, that is not always possible. On a typical Linux
system, there is a mix of UTF-8 and ISO Latin-1 text files, and there are seldom
any BOMs in the files to identify them.
UTF-8 is designed so that ISO Latin-1 characters with numbers beyond the 7-bit
ASCII range are seldom considered valid when decoded as UTF-8. Therefore one can
usually use heuristics to determine if a file is in UTF-8 or if it is encoded in
ISO Latin-1 (one byte per character). The unicode module can be used to
determine if data can be interpreted as UTF-8:
heuristic_encoding_bin(Bin) when is_binary(Bin) ->
 case unicode:characters_to_binary(Bin,utf8,utf8) of
	Bin ->
	 utf8;
	_ ->
	 latin1
 end.
If you do not have a complete binary of the file content, you can instead chunk
through the file and check part by part. The return-tuple
{incomplete,Decoded,Rest} from function
unicode:characters_to_binary/1,2,3 comes
in handy. The incomplete rest from one chunk of data read from the file is
prepended to the next chunk and we therefore avoid the problem of character
boundaries when reading chunks of bytes in UTF-8 encoding:
heuristic_encoding_file(FileName) ->
 {ok,F} = file:open(FileName,[read,binary]),
 loop_through_file(F,<<>>,file:read(F,1024)).

loop_through_file(_,<<>>,eof) ->
 utf8;
loop_through_file(_,_,eof) ->
 latin1;
loop_through_file(F,Acc,{ok,Bin}) when is_binary(Bin) ->
 case unicode:characters_to_binary([Acc,Bin]) of
	{error,_,_} ->
	 latin1;
	{incomplete,_,Rest} ->
	 loop_through_file(F,Rest,file:read(F,1024));
	Res when is_binary(Res) ->
	 loop_through_file(F,<<>>,file:read(F,1024))
 end.
Another option is to try to read the whole file in UTF-8 encoding and see if it
fails. Here we need to read the file using function io:get_chars/3, as we have
to read characters with a code point > 255:
heuristic_encoding_file2(FileName) ->
 {ok,F} = file:open(FileName,[read,binary,{encoding,utf8}]),
 loop_through_file2(F,io:get_chars(F,'',1024)).

loop_through_file2(_,eof) ->
 utf8;
loop_through_file2(_,{error,_Err}) ->
 latin1;
loop_through_file2(F,Bin) when is_binary(Bin) ->
 loop_through_file2(F,io:get_chars(F,'',1024)).

 Lists of UTF-8 Bytes

For various reasons, you can sometimes have a list of UTF-8 bytes. This is not a
regular string of Unicode characters, as each list element does not contain one
character. Instead you get the "raw" UTF-8 encoding that you have in binaries.
This is easily converted to a proper Unicode string by first converting byte per
byte into a binary, and then converting the binary of UTF-8 encoded characters
back to a Unicode string:
utf8_list_to_string(StrangeList) ->
 unicode:characters_to_list(list_to_binary(StrangeList)).

 Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding",
where strange characters are encoded in your binaries or files. In other words,
you can get a UTF-8 encoded binary that for the second time is encoded as UTF-8.
A common situation is where you read a file, byte by byte, but the content is
already UTF-8. If you then convert the bytes to UTF-8, using, for example, the
unicode module, or by writing to a file opened with option
{encoding,utf8}, you have each byte in the input file encoded as UTF-8, not
each character of the original text (one character can have been encoded in many
bytes). There is no real remedy for this other than to be sure of which data is
encoded in which format, and never convert UTF-8 data (possibly read byte by
byte from a file) into UTF-8 again.
By far the most common situation where this occurs, is when you get lists of
UTF-8 instead of proper Unicode strings, and then convert them to UTF-8 in a
binary or on a file:
wrong_thing_to_do() ->
 {ok,Bin} = file:read_file("an_utf8_encoded_file.txt"),
 MyList = binary_to_list(Bin), %% Wrong! It is an utf8 binary!
 {ok,C} = file:open("catastrophe.txt",[write,{encoding,utf8}]),
 io:put_chars(C,MyList), %% Expects a Unicode string, but get UTF-8
 %% bytes in a list!
 file:close(C). %% The file catastrophe.txt contains more or less unreadable
 %% garbage!
Ensure you know what a binary contains before converting it to a string. If no
other option exists, try heuristics:
if_you_can_not_know() ->
 {ok,Bin} = file:read_file("maybe_utf8_encoded_file.txt"),
 MyList = case unicode:characters_to_list(Bin) of
 L when is_list(L) ->
 L;
 _ ->
 binary_to_list(Bin) %% The file was bytewise encoded
 end,
 %% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
 {ok,G} = file:open("greatness.txt",[write,{encoding,utf8}]),
 io:put_chars(G,MyList), %% Expects a Unicode string, which is what it gets!
 file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

Uniform Resource Identifiers

 Basics

At the time of writing this document, in October 2020, there are two major
standards concerning Universal Resource Identifiers and Universal Resource
Locators:
	RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax
	WHAT WG URL - Living standard

The former is a classical standard with a proper formal syntax, using the so
called Augmented Backus-Naur Form (ABNF)
for describing the grammar, while the latter is a living document describing the
current pratice, that is, how a majority of Web browsers work with URIs. WHAT WG
URL is Web focused and it has no formal grammar but a plain english description
of the algorithms that should be followed.
What is the difference between them, if any? They provide an overlapping
definition for resource identifiers and they are not compatible. The
uri_string module implements
RFC 3986 and the term URI will be used
throughout this document. A URI is an identifier, a string of characters that
identifies a particular resource.
For a more complete problem statement regarding the URIs check the
URL Problem Statement and Directions.

 What is a URI?

Let's start with what it is not. It is not the text that you type in the address
bar in your Web browser. Web browsers do all possible heuristics to convert the
input into a valid URI that could be sent over the network.
A URI is an identifier consisting of a sequence of characters matching the
syntax rule named URI in RFC 3986.
It is crucial to clarify that a character is a symbol that is displayed on a
terminal or written to paper and should not be confused with its internal
representation.
A URI more specifically, is a sequence of characters from a subset of the US
ASCII character set. The generic URI syntax consists of a hierarchical sequence
of components referred to as the scheme, authority, path, query, and fragment.
There is a formal description for each of these components in
ABNF notation in
RFC 3986:
 URI = scheme ":" hier-part ["?" query] ["#" fragment]
 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty
 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
 authority = [userinfo "@"] host [":" port]
 userinfo = *(unreserved / pct-encoded / sub-delims / ":")

 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

 The uri_string module

As producing and consuming standard URIs can get quite complex, Erlang/OTP
provides a module, uri_string, to handle all the most difficult operations
such as parsing, recomposing, normalizing and resolving URIs against a base URI.
The API functions in uri_string work on two basic data types
uri_string() and
uri_map().
uri_string() represents a standard URI, while
uri_map() is a wider datatype, that can represent
URI components using Unicode characters.
uri_map() is a convenient choice for enabling
operations such as producing standard compliant URIs out of components that have
special or Unicode characters. It is easier
to explain this by an example.
Let's say that we would like to create the following URI and send it over the
network: http://cities/örebro?foo bar. This is not a valid URI as it contains
characters that are not allowed in a URI such as "ö" and the space. We can
verify this by parsing the URI:
 1> uri_string:parse("http://cities/örebro?foo bar").
 {error,invalid_uri,":"}
The URI parser tries all possible combinations to interpret the input and fails
at the last attempt when it encounters the colon character ":". Note, that the
inital fault occurs when the parser attempts to interpret the character "ö"
and after a failure back-tracks to the point where it has another possible
parsing alternative.
The proper way to solve this problem is to use uri_string:recompose/1 with a
uri_map() as input:
 2> uri_string:recompose(#{scheme => "http", host => "cities", path => "/örebro",
 query => "foo bar"}).
 "http://cities/%C3%B6rebro?foo%20bar"
The result is a valid URI where all the special characters are encoded as
defined by the standard. Applying uri_string:parse/1 and
uri_string:percent_decode/1 on the URI returns the original input:
 3> uri_string:percent_decode(uri_string:parse("http://cities/%C3%B6rebro?foo%20bar")).
 #{host => "cities",path => "/örebro",query => "foo bar",
 scheme => "http"}
This symmetric property is heavily used in our property test suite.

 Percent-encoding

As you have seen in the previous chapter, a standard URI can only contain a
strict subset of the US ASCII character set, moreover the allowed set of
characters is not the same in the different URI components. Percent-encoding is
a mechanism to represent a data octet in a component when that octet's
corresponding character is outside of the allowed set or is being used as a
delimiter. This is what you see when "ö" is encoded as %C3%B6 and space as
%20. Most of the API functions are expecting UTF-8 encoding when handling
percent-encoded triplets. The UTF-8 encoding of the
Unicode character "ö" is two octets:
OxC3 0xB6. The character space is in the first 128 characters of
Unicode and it is encoded using a single
octet 0x20.
Note
Unicode is backward compatible with ASCII,
the encoding of the first 128 characters is the same binary value as in ASCII.

 It is a major source of confusion exactly which
characters will be percent-encoded. In order to make it easier to answer this
question the library provides a utility function,
uri_string:allowed_characters/0, that
lists the allowed set of characters in each major URI component, and also in the
most important standard character sets.
 1> uri_string:allowed_characters().
 [{scheme,
 "+-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"},
 {userinfo,
 "!$%&'()*+,-.0123456789:;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {host,
 "!$&'()*+,-.0123456789:;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {ipv4,".0123456789"},
 {ipv6,".0123456789:ABCDEFabcdef"},
 {regname,
 "!$%&'()*+,-.0123456789;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {path,
 "!$%&'()*+,-./0123456789:;=@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {query,
 "!$%&'()*+,-./0123456789:;=?@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {fragment,
 "!$%&'()*+,-./0123456789:;=?@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {reserved,"!#$&'()*+,/:;=?@[]"},
 {unreserved,
 "-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"}]
If a URI component has a character that is not allowed, it will be
percent-encoded when the URI is produced:
 2> uri_string:recompose(#{scheme => "https", host => "local#host", path => ""}).
 "https://local%23host"
Consuming a URI containing percent-encoded triplets can take many steps. The
following example shows how to handle an input URI that is not normalized and
contains multiple percent-encoded triplets. First, the input
uri_string() is to be parsed into a
uri_map(). The parsing only splits the URI into
its components without doing any decoding:
 3> uri_string:parse("http://%6C%6Fcal%23host/%F6re%26bro%20").
 #{host => "%6C%6Fcal%23host",path => "/%F6re%26bro%20",
 scheme => "http"}}
The input is a valid URI but how can you decode those percent-encoded octets?
You can try to normalize the input with uri_string:normalize/1. The normalize
operation decodes those percent-encoded triplets that correspond to a character
in the unreserved set. Normalization is a safe, idempotent operation that
converts a URI into its canonical form:
 4> uri_string:normalize("http://%6C%6Fcal%23host/%F6re%26bro%20").
 "http://local%23host/%F6re%26bro%20"
 5> uri_string:normalize("http://%6C%6Fcal%23host/%F6re%26bro%20", [return_map]).
 #{host => "local%23host",path => "/%F6re%26bro%20",
 scheme => "http"}
There are still a few percent-encoded triplets left in the output. At this
point, when the URI is already parsed, it is safe to apply application specific
decoding on the remaining character triplets. Erlang/OTP provides a function,
uri_string:percent_decode/1 for raw percent decoding that you can use on the
host and path components, or on the whole map:
 6> uri_string:percent_decode("local%23host").
 "local#host"
 7> uri_string:percent_decode("/%F6re%26bro%20").
 {error,invalid_utf8,<<"/öre&bro ">>}
 8> uri_string:percent_decode(#{host => "local%23host",path => "/%F6re%26bro%20",
 scheme => "http"}).
 {error,{invalid,{path,{invalid_utf8,<<"/öre&bro ">>}}}}
The host was successfully decoded but the path contains at least one character
with non-UTF-8 encoding. In order to be able to decode this, you have to make
assumptions about the encoding used in these triplets. The most obvious choice
is latin-1, so you can try uri_string:transcode/2, to transcode the path to
UTF-8 and run the percent-decode operation on the transcoded string:
 9> uri_string:transcode("/%F6re%26bro%20", [{in_encoding, latin1}]).
 "/%C3%B6re%26bro%20"
 10> uri_string:percent_decode("/%C3%B6re%26bro%20").
 "/öre&bro "
It is important to emphasize that it is not safe to apply
uri_string:percent_decode/1 directly on an input URI:
 11> uri_string:percent_decode("http://%6C%6Fcal%23host/%C3%B6re%26bro%20").
 "http://local#host/öre&bro "
 12> uri_string:parse("http://local#host/öre&bro ").
 {error,invalid_uri,":"}
Note
Percent-encoding is implemented in uri_string:recompose/1 and it happens
when converting a uri_map() into a
uri_string(). Applying any percent-encoding
directly on an input URI would not be safe just as in the case of
uri_string:percent_decode/1, the output could be an invalid URI. Quoting
functions allow users to perform raw percent encoding and decoding on
application data which cannot be handled automatically by
uri_string:recompose/1. For example in scenario when user would need to use
'/' or sub-delimeter as data rather than delimeter in a path component.

 Normalization

Normalization is the operation of converting the input URI into a canonical
form and keeping the reference to the same underlying resource. The most common
application of normalization is determining whether two URIs are equivalent
without accessing their referenced resources.
Normalization has 6 distinct steps. First the input URI is parsed into an
intermediate form that can handle Unicode
characters. This datatype is the uri_map(), that
can hold the components of the URI in map elements of type
unicode:chardata/0. After having the intermediate form, a sequence of
normalization algorithms are applied to the individual URI components:
	Case normalization - Converts the scheme and host components to lower
case as they are not case sensitive.

	Percent-encoding normalization - Decodes percent-encoded triplets that
correspond to characters in the unreserved set.

	Scheme-based normalization - Applying rules for the schemes http, https,
ftp, ssh, sftp and tftp.

	Path segment normalization - Converts the path into a canonical form.

After these steps, the intermediate data structure, an
uri_map(), is fully normalized. The last step is
applying uri_string:recompose/1 that converts the intermediate structure into
a valid canonical URI string.
Notice the order, the
uri_string:normalize(URIMap, [return_map]) that we
used many times in this user guide is a shortcut in the normalization process
returning the intermediate datastructure, and allowing us to inspect and apply
further decoding on the remaining percent-encoded triplets.
 13> uri_string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b").
 "http://localhost/%C3%B6rebro/b"
 14> uri_string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b", [return_map]).
 #{host => "localhost",path => "/%C3%B6rebro/b",
 scheme => "http"}

 Special considerations

The current URI implementation provides support for producing and consuming
standard URIs. The API is not meant to be directly exposed in a Web browser's
address bar where users can basically enter free text. Application designers
shall implement proper heuristics to map the input into a parsable URI.

assert.hrl

Assert macros.

 Description

The include file assert.hrl provides macros for inserting assertions in your
program code.
Include the following directive in the module from which the function is called:
-include_lib("stdlib/include/assert.hrl").
When an assertion succeeds, the assert macro yields the atom ok. When an
assertion fails, an exception of type error is generated. The associated error
term has the form {Macro, Info}. Macro is the macro name, for example,
assertEqual. Info is a list of tagged values, such as
[{module, M}, {line, L}, ...], which gives more information about the location
and cause of the exception. All entries in the Info list are optional; do not
rely programmatically on any of them being present.
Each assert macro has a corresponding version with an extra argument, for adding
comments to assertions. These can for example be printed as part of error
reports, to clarify the meaning of the check that failed. For example,
?assertEqual(0, fib(0), "Fibonacci is defined for zero"). The comment text can
be any character data (string, UTF8-binary, or deep list of such data), and will
be included in the error term as {comment, Text}.
If the macro NOASSERT is defined when assert.hrl is read by the compiler,
the macros are defined as equivalent to the atom ok. The test will not be
performed and there is no cost at runtime.
For example, using erlc to compile your modules, the following disables all
assertions:
erlc -DNOASSERT=true *.erl
(The value of NOASSERT does not matter, only the fact that it is defined.)
A few other macros also have effect on the enabling or disabling of assertions:
	If NODEBUG is defined, it implies NOASSERT (unless DEBUG is also
defined, which overrides NODEBUG).
	If ASSERT is defined, it overrides NOASSERT, that is, the assertions
remain enabled.

If you prefer, you can thus use only DEBUG/NODEBUG as the main flags to
control the behavior of the assertions (which is useful if you have other
compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NOASSERT to control only the assert macros.

 Macros

	assert(BoolExpr)

	assert(BoolExpr, Comment) - Tests that BoolExpr completes normally
returning true.

	assertNot(BoolExpr)

	assertNot(BoolExpr, Comment) - Tests that BoolExpr completes normally
returning false.

	assertMatch(GuardedPattern, Expr)

	assertMatch(GuardedPattern, Expr, Comment) - Tests that Expr completes
normally yielding a value that matches GuardedPattern, for example:
?assertMatch({bork, _}, f())
Notice that a guard when ... can be included:
?assertMatch({bork, X} when X > 0, f())

	assertNotMatch(GuardedPattern, Expr)

	assertNotMatch(GuardedPattern, Expr, Comment) - Tests that Expr
completes normally yielding a value that does not match GuardedPattern.
As in assertMatch, GuardedPattern can have a when part.

	assertEqual(ExpectedValue, Expr)

	assertEqual(ExpectedValue, Expr, Comment) - Tests that Expr completes
normally yielding a value that is exactly equal to ExpectedValue.

	assertNotEqual(ExpectedValue, Expr)

	assertNotEqual(ExpectedValue, Expr, Comment) - Tests that Expr
completes normally yielding a value that is not exactly equal to
ExpectedValue.

	assertException(Class, Term, Expr)

	assertException(Class, Term, Expr, Comment) - Tests that Expr
completes abnormally with an exception of type Class and with the associated
Term. The assertion fails if Expr raises a different exception or if it
completes normally returning any value.
Notice that both Class and Term can be guarded patterns, as in
assertMatch.

	assertNotException(Class, Term, Expr)

	assertNotException(Class, Term, Expr, Comment) - Tests that Expr does
not evaluate abnormally with an exception of type Class and with the
associated Term. The assertion succeeds if Expr raises a different
exception or if it completes normally returning any value.
As in assertException, both Class and Term can be guarded patterns.

	assertError(Term, Expr)

	assertError(Term, Expr, Comment) - Equivalent to
assertException(error, Term, Expr)

	assertExit(Term, Expr)

	assertExit(Term, Expr, Comment) - Equivalent to
assertException(exit, Term, Expr)

	assertThrow(Term, Expr)

	assertThrow(Term, Expr, Comment) - Equivalent to
assertException(throw, Term, Expr)

 See Also

compile, erlc(3)

erl_tar

Unix 'tar' utility for reading and writing tar archives.
This module archives and extract files to and from a tar file. This module
supports reading most common tar formats, namely v7, STAR, USTAR, and PAX, as
well as some of GNU tar's extensions to the USTAR format (sparse files most
notably). It produces tar archives in USTAR format, unless the files being
archived require PAX format due to restrictions in USTAR (such as unicode
metadata, filename length, and more). As such, erl_tar supports tar archives
produced by most all modern tar utilities, and produces tarballs which should be
similarly portable.
By convention, the name of a tar file is to end in ".tar". To abide to the
convention, add ".tar" to the name.
Tar files can be created in one operation using function create/2 or
create/3.
Alternatively, for more control, use functions open/2, add/3,4,
and close/1.
To extract all files from a tar file, use function extract/1. To extract only
some files or to be able to specify some more options, use function extract/2.
To return a list of the files in a tar file, use function table/1 or
table/2. To print a list of files to the Erlang shell, use function t/1 or
tt/1.
To convert an error term returned from one of the functions above to a readable
message, use function format_error/1.

 Unicode Support

If file:native_name_encoding/0 returns utf8, path names are encoded in UTF-8
when creating tar files, and path names are assumed to be encoded in UTF-8 when
extracting tar files.
If file:native_name_encoding/0 returns latin1, no translation of path names
is done.
Unicode metadata stored in PAX headers is preserved

 Other Storage Media

The ftp module normally accesses the tar file on disk using the file
module. When other needs arise, you can define your own low-level Erlang
functions to perform the writing and reading on the storage media; use function
init/3.
An example of this is the SFTP support in ssh_sftp:open_tar/3. This function
opens a tar file on a remote machine using an SFTP channel.

 Limitations

	If you must remain compatible with the USTAR tar format, you must ensure file
paths being stored are less than 255 bytes in total, with a maximum filename
component length of 100 bytes. USTAR uses a header field (prefix) in addition
to the name field, and splits file paths longer than 100 bytes into two parts.
This split is done on a directory boundary, and is done in such a way to make
the best use of the space available in those two fields, but in practice this
will often mean that you have less than 255 bytes for a path. erl_tar will
automatically upgrade the format to PAX to handle longer filenames, so this is
only an issue if you need to extract the archive with an older implementation
of erl_tar or tar which does not support PAX. In this case, the PAX
headers will be extracted as regular files, and you will need to apply them
manually.
	Like the above, if you must remain USTAR compatible, you must also ensure than
paths for symbolic/hard links are no more than 100 bytes, otherwise PAX
headers will be used.

 Summary

 Types

 rand - stdlib v6.0.1

rand

Pseudo random number generation
This module provides pseudo random number generation and implements
a number of base generator algorithms. Most are provided through
a plug-in framework that adds
features to the base generators.
At the end of this module documentation there are some
niche algorithms that don't use
this module's normal plug-in framework.
They may be useful for special purposes like short generation time
when quality is not essential, for seeding other generators, and such.

 Plug-in framework

The plug-in framework implements
a common API to, and enhancements
of the base generators:
	Operating on a generator state in the
process dictionary.
	Automatic seeding.
	Manual seeding support to avoid common pitfalls.
	Generating integers in any range, with
uniform distribution, without noticable bias.
	Generating integers in any range, larger than
the base generator's, with uniform distribution.
	Generating floating-point numbers with
uniform distribution.
	Generating floating-point numbers with
normal distribution.
	Generating any number of bytes.

The base generator algorithms implements the
Xoroshiro and Xorshift algorithms
by Sebastiano Vigna. During an iteration they generate a large integer
(at least 58-bit) and operate on a state of several large integers.
To create numbers with normal distribution the
Ziggurat Method by Marsaglia and Tsang
is used on the output from a base generator.
For most algorithms, jump functions are provided for generating
non-overlapping sequences. A jump function perform a calculation
equivalent to a large number of repeated state iterations,
but execute in a time roughly equivalent to one regular iteration
per generator bit.
 The following algorithms are provided:
	exsss, the default algorithm
(Since OTP 22.0)
Xorshift116**, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls
This is the Xorshift116 generator combined with the StarStar scrambler from
the 2018 paper by David Blackman and Sebastiano Vigna:
Scrambled Linear Pseudorandom Number Generators
The generator doesn't use 58-bit rotates so it is faster than the
Xoroshiro116 generator, and when combined with the StarStar scrambler
it doesn't have any weak low bits like exrop (Xoroshiro116+).
Alas, this combination is about 10% slower than exrop, but despite that
it is the default algorithm thanks to
its statistical qualities.

	exro928ss (Since OTP 22.0)
Xoroshiro928**, 58 bits precision and a period of 2^928-1
Jump function: equivalent to 2^512 calls
This is a 58 bit version of Xoroshiro1024**, from the 2018 paper by
David Blackman and Sebastiano Vigna:
Scrambled Linear Pseudorandom Number Generators
that on a 64 bit Erlang system executes only about 40% slower than the
default exsss algorithm
but with much longer period and better statistical properties,
but on the flip side a larger state.
Many thanks to Sebastiano Vigna for his help with the 58 bit adaption.

	exrop (Since OTP 20.0)
Xoroshiro116+, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls

	exs1024s (Since OTP 20.0)
Xorshift1024*, 64 bits precision and a period of 2^1024-1
Jump function: equivalent to 2^512 calls

	exsp (Since OTP 20.0)
Xorshift116+, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls
This is a corrected version of a previous
default algorithm (exsplus, deprecated),
that was superseded by Xoroshiro116+ (exrop). Since this algorithm
doesn't use rotate it executes a little (say < 15%) faster than exrop
(that has to do a 58 bit rotate, for which there is no native instruction).
See the algorithms' homepage.

Default Algorithm
The current default algorithm is
exsss (Xorshift116**). If a specific algorithm is
required, ensure to always use seed/1 to initialize the state.
Which algorithm that is the default may change between Erlang/OTP releases,
and is selected to be one with high speed, small state and "good enough"
statistical properties.
Old Algorithms
Undocumented (old) algorithms are deprecated but still implemented so old code
relying on them will produce the same pseudo random sequences as before.
Note
There were a number of problems in the implementation of
the now undocumented algorithms, which is why they are deprecated.
The new algorithms are a bit slower but do not have these problems:
Uniform integer ranges had a skew in the probability distribution
that was not noticable for small ranges but for large ranges
less than the generator's precision the probability to produce
a low number could be twice the probability for a high.
Uniform integer ranges larger than or equal to the generator's precision
used a floating point fallback that only calculated with 52 bits
which is smaller than the requested range and therefore all numbers
in the requested range weren't even possible to produce.
Uniform floats had a non-uniform density so small values for example
less than 0.5 had got smaller intervals decreasing as the generated value
approached 0.0 although still uniformly distributed for sufficiently large
subranges. The new algorithms produces uniformly distributed floats
on the form N * 2.0^(-53) hence they are equally spaced.

Generator State
Every time a random number is generated, a state is used to calculate it,
producing a new state. The state can either be implicit
or be an explicit argument and return value.
The functions with implicit state operates on a state stored
in the process dictionary under the key rand_seed. If that key
doesn't exist when the function is called, seed/1 is called automatically
with the default algorithm and creates
a reasonably unpredictable seed.
The functions with explicit state don't use the process dictionary.
Examples
Simple use; create and seed the
default algorithm with a non-fixed seed,
if not already done, and generate two uniformly distibuted
floating point numbers.
R0 = rand:uniform(),
R1 = rand:uniform(),
Use a specified algorithm:
_ = rand:seed(exs928ss),
R2 = rand:uniform(),
Use a specified algorithm with a fixed seed:
_ = rand:seed(exs928ss, {123, 123534, 345345}),
R3 = rand:uniform(),
Use the functional API with a non-fixed seed:
S0 = rand:seed_s(exsss),
{R4, S1} = rand:uniform_s(S0),
Generate a textbook basic form Box-Muller standard normal distribution number:
R5 = rand:uniform_real(),
R6 = rand:uniform(),
SND0 = math:sqrt(-2 * math:log(R5)) * math:cos(math:pi() * R6)
Generate a standard normal distribution number:
{SND1, S2} = rand:normal_s(S1),
Generate a normal distribution number with with mean -3 and variance 0.5:
{ND0, S3} = rand:normal_s(-3, 0.5, S2),
Quality of the Generated Numbers
Note
The builtin random number generator algorithms are not cryptographically
strong. If a cryptographically strong random number generator is needed,
use something like crypto:rand_seed/0.

For all these generators except exro928ss and exsss the lowest bit(s)
have got a slightly less random behaviour than all other bits.
1 bit for exrop (and exsp), and 3 bits for exs1024s. See for example
this explanation in the
Xoroshiro128+
generator source code:
Beside passing BigCrush, this generator passes the PractRand test suite
up to (and included) 16TB, with the exception of binary rank tests,
which fail due to the lowest bit being an LFSR; all other bits pass all
tests. We suggest to use a sign test to extract a random Boolean value.

If this is a problem; to generate a boolean with these algorithms,
use something like this:
(rand:uniform(256) > 128) % -> boolean()
((rand:uniform(256) - 1) bsr 7) % -> 0 | 1
For a general range, with N = 1 for exrop, and N = 3 for exs1024s:
(((rand:uniform(Range bsl N) - 1) bsr N) + 1)
The floating point generating functions in this module waste the lowest bits
when converting from an integer so they avoid this snag.

 Niche algorithms

The niche algorithms API contains
special purpose algorithms that don't use the
plug-in framework, mainly for performance reasons.
Since these algorithms lack the plug-in framework support, generating numbers
in a range other than the base generator's range may become a problem.
There are at least four ways to do this, assuming the Range is less than
the generator's range:

	Modulo
To generate a number V in the range 0..Range-1:
Generate a number X.
Use V = X rem Range as your value.

This method uses rem, that is, the remainder of an integer division,
which is a slow operation.
Low bits from the generator propagate straight through to
the generated value, so if the generator has got weaknesses
in the low bits this method propagates them too.
If Range is not a divisor of the generator range, the generated numbers
have a bias. Example:
Say the generator generates a byte, that is, the generator range
is 0..255, and the desired range is 0..99 (Range = 100).
Then there are 3 generator outputs that produce the value 0,
these are; 0, 100 and 200.
But there are only 2 generator outputs that produce the value 99,
which are; 99 and 199. So the probability for a value V in 0..55
is 3/2 times the probability for the other values 56..99.
If Range is much smaller than the generator range, then this bias
gets hard to detect. The rule of thumb is that if Range is smaller
than the square root of the generator range, the bias is small enough.
Example:
A byte generator when Range = 20. There are 12 (256 div 20)
possibilities to generate the highest numbers and one more to generate
a number V < 16 (256 rem 20). So the probability is 13/12
for a low number versus a high. To detect that difference with
some confidence you would need to generate a lot more numbers
than the generator range, 256 in this small example.

	Truncated multiplication
To generate a number V in the range 0..Range-1, when you have
a generator with a power of 2 range (0..2^Bits-1):
Generate a number X.
Use V = X * Range bsr Bits as your value.

If the multiplication X * Range creates a bignum
this method becomes very slow.
High bits from the generator propagate through to the generated value,
so if the generator has got weaknesses in the high bits this method
propagates them too.
If Range is not a divisor of the generator range, the generated numbers
have a bias, pretty much as for the Modulo method above.

	Shift or mask
To generate a number in a power of 2 range (0..2^RBits-1),
when you have a generator with a power of 2 range (0..2^Bits):
Generate a number X.
Use V = X band ((1 bsl RBits)-1) or V = X bsr (Bits-RBits)
as your value.

Masking with band preserves the low bits, and right shifting
with bsr preserves the high, so if the generator has got weaknesses
in high or low bits; choose the right operator.
If the generator has got a range that is not a power of 2
and this method is used anyway, it introduces bias in the same way
as for the Modulo method above.

	Rejection
Generate a number X.
If X is in the range, use it as your value,
otherwise reject it and repeat.

In theory it is not certain that this method will ever complete,
but in practice you ensure that the probability of rejection is low.
Then the probability for yet another iteration decreases exponentially
so the expected mean number of iterations will often be between 1 and 2.
Also, since the base generator is a full length generator,
a value that will break the loop must eventually be generated.
These methods can be combined, such as using
the Modulo method and only if the generator value
would create bias use Rejection.
Or using Shift or mask to reduce the size
of a generator value so that
Truncated multiplication
will not create a bignum.
The recommended way to generate a floating point number
(IEEE 745 Double, that has got a 53-bit mantissa) in the range
0..1, that is 0.0 =< V < 1.0 is to generate a 53-bit number X
and then use V = X * (1.0/((1 bsl 53))) as your value.
This will create a value on the form N*2^-53 with equal probability
for every possible N for the range.

 Summary

 Types

 random - stdlib v6.0.1

random

 This module is deprecated. Use the module 'rand' instead.

Pseudo-random number generation.
This module provides a random number generator. The method is attributed to B.A.
Wichmann and I.D. Hill in 'An efficient and portable pseudo-random number
generator', Journal of Applied Statistics. AS183. 1982. Also Byte March 1987.
The algorithm is a modification of the version attributed to Richard A. O'Keefe
in the standard Prolog library.
Every time a random number is requested, a state is used to calculate it, and a
new state is produced. The state can either be implicit (kept in the process
dictionary) or be an explicit argument and return value. In this implementation,
the state (the type ran/0) consists of a tuple of three integers.
Note
This random number generator is not cryptographically strong. If a strong
cryptographic random number generator is needed, use one of functions in the
crypto module, for example, crypto:strong_rand_bytes/1.

Note
The improved rand module is to be used instead of this module.

 Note

Some of the functions use the process dictionary variable random_seed to
remember the current seed.
If a process calls uniform/0 or uniform/1 without setting a seed first,
seed/0 is called automatically.
The implementation changed in Erlang/OTP R15. Upgrading to R15 breaks
applications that expect a specific output for a specified seed. The output is
still deterministic number series, but different compared to releases older than
R15. Seed {0,0,0} does, for example, no longer produce a flawed series of only
zeros.

 Summary

 Types

 zip - stdlib v6.0.1

zip

Utility for reading and creating 'zip' archives.
This module archives and extracts files to and from a zip archive. The zip
format is specified by the "ZIP Appnote.txt" file, available on the PKWARE web
site www.pkware.com.
The zip module supports zip archive versions up to 6.1. However,
password-protection and Zip64 are not supported.
By convention, the name of a zip file is to end with .zip. To abide to the
convention, add .zip to the filename.
	To create zip archives, use function zip/2 or zip/3. They are
also available as create/2,3, to resemble the erl_tar module.
	To extract files from a zip archive, use function unzip/1 or unzip/2. They
are also available as extract/1,2, to resemble the erl_tar module.
	To fold a function over all files in a zip archive, use function foldl/3.
	To return a list of the files in a zip archive, use function list_dir/1 or
list_dir/2. They are also available as table/1,2, to resemble the
erl_tar module.
	To print a list of files to the Erlang shell, use function t/1 or tt/1.
	Sometimes it is desirable to open a zip archive, and to unzip files from it
file by file, without having to reopen the archive. This can be done by
functions zip_open/1,2, zip_get/1,2,
zip_list_dir/1, and zip_close/1.

 Limitations

	Zip64 archives are not supported.
	Password-protected and encrypted archives are not supported.
	Only the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip
methods are supported.
	The archive size is limited to 2 GB (32 bits).
	Comments for individual files are not supported when creating zip archives.
The zip archive comment for the whole zip archive is supported.
	Changing a zip archive is not supported. To add or remove a file from an
archive, the whole archive must be recreated.

 Summary

 Types

 beam_lib - stdlib v6.0.1

beam_lib

This module provides an interface to files created by the BEAM Compiler ("BEAM
files").
The format used, a variant of "EA IFF 1985" Standard for Interchange Format Files,
divides data into chunks.
Chunk data can be returned as binaries or as compound terms. Compound terms are
returned when chunks are referenced by names (atoms) rather than identifiers
(strings). The recognized names and the corresponding identifiers are as
follows:
	atoms ("Atom")
	attributes ("Attr")
	compile_info ("CInf")
	debug_info ("Dbgi")
	exports ("ExpT")
	imports ("ImpT")
	indexed_imports ("ImpT")
	labeled_exports ("ExpT")
	labeled_locals ("LocT")
	locals ("LocT")
	documentation ("Docs")

 Debug Information/Abstract Code

Option debug_info can be specified to the Compiler (see
compile) to have debug information, such as
Erlang Abstract Format, stored in the debug_info chunk.
Tools such as Debugger and Xref require the debug information to be included.
Warning
Source code can be reconstructed from the debug information. To prevent this,
use encrypted debug information (see below).

The debug information can also be removed from BEAM files using strip/1,
strip_files/1, and/or strip_release/1.

 Reconstruct Source Code

The following example shows how to reconstruct Erlang source code from the debug
information in a BEAM file Beam:
{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(Beam,[abstract_code]).
io:fwrite("~s~n", [erl_prettypr:format(erl_syntax:form_list(AC))]).

 Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but still
be able to use tools such as Debugger or Xref.
To use encrypted debug information, a key must be provided to the compiler and
beam_lib. The key is specified as a string. It is recommended that the string
contains at least 32 characters and that both upper and lower case letters as
well as digits and special characters are used.
The default type (and currently the only type) of crypto algorithm is
des3_cbc, three rounds of DES. The key string is scrambled using
erlang:md5/1 to generate the keys used for des3_cbc.
Note
As far as we know by the time of writing, it is infeasible to break des3_cbc
encryption without any knowledge of the key. Therefore, as long as the key is
kept safe and is unguessable, the encrypted debug information should be safe
from intruders.

The key can be provided in the following two ways:
	Use Compiler option {debug_info_key,Key}, see
compile and function crypto_key_fun/1 to
register a fun that returns the key whenever beam_lib must decrypt the
debug information.

If no such fun is registered, beam_lib instead searches for an .erlang.crypt
file, see the next section.
	Store the key in a text file named .erlang.crypt.

In this case, Compiler option encrypt_debug_info can be used, see
compile.

 .erlang.crypt

beam_lib searches for .erlang.crypt in the current directory, then the
user's home directory and then
filename:basedir(user_config, "erlang"). If the
file is found and contains a key, beam_lib implicitly creates a crypto key fun
and registers it.
File .erlang.crypt is to contain a single list of tuples:
{debug_info, Mode, Module, Key}
Mode is the type of crypto algorithm; currently, the only allowed value is
des3_cbc. Module is either an atom, in which case Key is only used for the
module Module, or [], in which case Key is used for all modules. Key is
the non-empty key string.
Key in the first tuple where both Mode and Module match is used.
The following is an example of an .erlang.crypt file that returns the same key
for all modules:
[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].
The following is a slightly more complicated example of an .erlang.crypt
providing one key for module t and another key for all other modules:
[{debug_info, des3_cbc, t, "My KEY"},
 {debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].
Note
Do not use any of the keys in these examples. Use your own keys.

 Summary

 Types

 epp - stdlib v6.0.1

epp

An Erlang code preprocessor.
The Erlang code preprocessor includes functions that are used by the compile
module to preprocess macros and include files before the parsing takes place.
The Erlang source file encoding is selected by a comment in one
of the first two lines of the source file. The first string matching the regular
expression coding\s*[:=]\s*([-a-zA-Z0-9])+ selects the encoding. If the
matching string is not a valid encoding, it is ignored. The valid encodings are
Latin-1 and UTF-8, where the case of the characters can be chosen freely.
Examples:
%% coding: utf-8
%% For this file we have chosen encoding = Latin-1
%% -*- coding: latin-1 -*-

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O
modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

erl_parse

 Summary

 Types

 erl_anno - stdlib v6.0.1

erl_anno

Abstract datatype for the annotations of the Erlang Compiler.
This module provides an abstract type that is used by the Erlang Compiler and
its helper modules for holding data such as column, line number, and text. The
data type is a collection of annotations as described in the
following.
The Erlang Token Scanner returns tokens with a subset of the following
annotations, depending on the options:
	column - The column where the token begins.

	location - The line and column where the token begins, or just the line
if the column is unknown.

	text - The token's text.

From this, the following annotation is derived:
	line - The line where the token begins.

This module also supports the following annotations, which are used by various
modules:
	file - A filename.

	generated - A Boolean indicating if the abstract code is
compiler-generated. The Erlang Compiler does not emit warnings for such code.

	record - A Boolean indicating if the origin of the abstract code is a
record. Used by Dialyzer to assign types to tuple elements.

The functions column(),
end_location(), line(),
location(), and text() in the
erl_scan module can be used for inspecting annotations in tokens.
The functions anno_from_term(),
anno_to_term(),
fold_anno(),
map_anno(),
mapfold_anno(), and
new_anno(), in the erl_parse module can be used
for manipulating annotations in abstract code.

 See Also

erl_parse, erl_scan

 Summary

 Types

 erl_eval - stdlib v6.0.1

erl_eval

The Erlang meta interpreter.
This module provides an interpreter for Erlang expressions. The expressions are
in the abstract syntax as returned by erl_parse, the Erlang parser, or
io.

 Local Function Handler

During evaluation of a function, no calls can be made to local functions. An
undefined function error would be generated. However, the optional argument
LocalFunctionHandler can be used to define a function that is called when
there is a call to a local function. The argument can have the following
formats:
	{value,Func} - This defines a local function handler that is called
with:
Func(Name, Arguments)
Name is the name of the local function (an atom) and Arguments is a list
of the evaluated arguments. The function handler returns the value of the
local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler calls exit/1 with a
suitable exit value.

	{eval,Func} - This defines a local function handler that is called with:
Func(Name, Arguments, Bindings)
Name is the name of the local function (an atom), Arguments is a list of
the unevaluated arguments, and Bindings are the current variable bindings.
The function handler returns:
{value,Value,NewBindings}
Value is the value of the local function and NewBindings are the updated
variable bindings. In this case, the function handler must itself evaluate all
the function arguments and manage the bindings. To signal an error, the
function handler calls exit/1 with a suitable exit value.

	none - There is no local function handler.

 Non-Local Function Handler

The optional argument NonLocalFunctionHandler can be used to define a function
that is called in the following cases:
	A functional object (fun) is called.
	A built-in function is called.
	A function is called using the M:F syntax, where M and F are atoms or
expressions.
	An operator Op/A is called (this is handled as a call to function
erlang:Op/A).

Exceptions are calls to erlang:apply/2,3; neither of the function handlers are
called for such calls. The argument can have the following formats:
	{value,Func} - This defines a non-local function handler. The function
may be called with two arguments:
Func(FuncSpec, Arguments)
or three arguments:
Func(Anno, FuncSpec, Arguments)
Anno is the erl_anno:anno() of the node, FuncSpec
is the name of the function on the form {Module,Function} or a fun, and
Arguments is a list of the evaluated arguments. The function handler
returns the value of the function. To signal an error, the function handler
calls exit/1 with a suitable exit value.

	none - There is no non-local function handler.

Note
For calls such as erlang:apply(Fun, Args) or
erlang:apply(Module, Function, Args), the call of the non-local function
handler corresponding to the call to erlang:apply/2,3 itself
(Func({erlang, apply}, [Fun, Args]) or
Func({erlang, apply}, [Module, Function, Args])) never takes place.
The non-local function handler is however called with the evaluated
arguments of the call to erlang:apply/2,3: Func(Fun, Args) or
Func({Module, Function}, Args) (assuming that {Module, Function} is not
{erlang, apply}).
Calls to functions defined by evaluating fun expressions "fun ... end" are
also hidden from non-local function handlers.

The non-local function handler argument is probably not used as frequently as
the local function handler argument. A possible use is to call
exit/1 on calls to functions that for some reason are not allowed
to be called.

 Summary

 Types

 erl_expand_records - stdlib v6.0.1

erl_expand_records

This module expands records in a module.

 See Also

Section The Abstract Format in ERTS User's Guide.

 Summary

 Functions

 erl_features - stdlib v6.0.1

erl_features

This module contains functions for supporting features that can be
enabled/disabled in Erlang.
It should be considered as mostly for internal use, although there are some
functions that might be useful when writing tools.

 Summary

 Types

 erl_id_trans - stdlib v6.0.1

erl_id_trans

This module performs an identity parse transformation of Erlang code.
It is included as an example for users who wants to write their own
parse transformers. If option {parse_transform,Module} is passed
to the compiler, a user-written function parse_transform/2
is called by the compiler before the code is checked for errors.
Before the function parse_transform/2 is called, the Erlang
Compiler checks if the parse transformation can handle abstract code
with column numbers: If the function parse_transform_info/0
is implemented and returns a map where the key error_location is
associated with the value line, the compiler removes
column numbers from the abstract code before calling the parse
transform. Otherwise, the compiler passes the abstract code on
without modification.

 Parse Transformations

Parse transformations are used if a programmer wants to use
Erlang syntax, but with different semantics. The original Erlang
code is then transformed into other Erlang code.
Note
Programmers are strongly advised not to engage in parse
transformations. No support is offered for problems encountered.

 See Also

erl_parse and compile.

 Summary

 Functions

 erl_internal - stdlib v6.0.1

erl_internal

Internal Erlang definitions.
This module defines Erlang BIFs, guard tests, and operators. This module is only
of interest to programmers who manipulate Erlang code.

 Summary

 Functions

 erl_lint - stdlib v6.0.1

erl_lint

The Erlang code linter.
This module is used to check Erlang code for illegal syntax and other bugs. It
also warns against coding practices that are not recommended.
The errors detected include:
	Redefined and undefined functions
	Unbound and unsafe variables
	Illegal record use

The warnings detected include:
	Unused functions and imports
	Unused variables
	Variables imported into matches
	Variables exported from if/case/receive
	Variables shadowed in funs and list comprehensions

Some of the warnings are optional, and can be turned on by specifying the
appropriate option, described below.
The functions in this module are invoked automatically by the Erlang compiler.
There is no reason to invoke these functions separately unless you have written
your own Erlang compiler.

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O
modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

epp, erl_parse

 Summary

 Types

 erl_parse - stdlib v6.0.1

erl_parse

This module is the basic Erlang parser that converts tokens into the abstract
form of either forms (that is, top-level constructs), expressions, or terms.
The Abstract Format is described in the ERTS User's Guide. Notice that a token
list must end with the dot token to be acceptable to the parse functions
(see the erl_scan) module.

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules.
The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

erl_anno, erl_scan, io,