

 ssh

 v5.2.1

 [image: Logo]

 Table of contents

 	SSH Application

 	SSH Release Notes

 	User's Guides

 	SSH Protocol Introduction

 	Examples

 	Terminology

 	Configuration in SSH

 	Configuring algorithms in SSH

 	Hardening

 	

 	Modules

 	ssh

 	ssh_agent

 	ssh_client_channel

 	ssh_client_key_api

 	ssh_connection

 	ssh_file

 	ssh_server_channel

 	ssh_server_key_api

 	ssh_sftp

 	ssh_sftpd

SSH Application

The ssh application implements the Secure Shell (SSH) protocol and provides an
SSH File Transfer Protocol (SFTP) client and server.

 Description

The ssh application is an implementation of the SSH protocol in Erlang. ssh
offers API functions to write customized SSH clients and servers as well as
making the Erlang shell available over SSH. An SFTP client, ssh_sftp, and
server, ssh_sftpd, are also included.

 Dependencies

The ssh application uses the applications public_key and crypto to
handle public keys and encryption. Hence, these applications must be loaded for
the ssh application to work. The call ssh:start/0 will do the necessary
calls to application:start/1,2 before it starts the
ssh itself.

 Configuration

The SSH application uses Configuration Parameters. Where to set them are
described in config User's Guide with SSH details in
Configuration in SSH.
Some special configuration files from OpenSSH are also used:
	known_hosts
	authorized_keys
	authorized_keys2
	id_dsa (supported but disabled by default)
	id_rsa (SHA1 sign/verify are supported but disabled by default from
OTP-24)
	id_ecdsa
	id_ed25519
	id_ed448
	ssh_host_dsa_key (supported but disabled by default)
	ssh_host_rsa_key (SHA1 sign/verify are supported but disabled by default
from OTP-24)
	ssh_host_ecdsa_key
	ssh_host_ed25519_key
	ssh_host_ed448_key

By default, ssh looks for id_*, known_hosts, and authorized_keys in
~/.ssh, and for the ssh_host_*_key files in /etc/ssh. These locations can
be changed by the options user_dir
and system_dir. More about where to
set them is described in Configuration in SSH.
Public key handling can also be customized through a callback module that
implements the behaviors ssh_client_key_api and ssh_server_key_api.
See also the default callback module documentation in ssh_file.
Disabled public key algorithms can be enabled with the
preferred_algorithms or
modify_algorithms options. See
Example 9 in
Configuring algorithms in SSH for a description.

 Public Keys

id_* are the users private key files. Notice that the public key is part of
the private key so the ssh application does not use the id_*.pub files.
These are for the user's convenience when it is needed to convey the user's
public key.
See ssh_file for details.

 Known Hosts

The known_hosts file contains a list of approved servers and their public
keys. Once a server is listed, it can be verified without user interaction.
See ssh_file for details.

 Authorized Keys

The authorized_key file keeps track of the user's authorized public keys. The
most common use of this file is to let users log in without entering their
password, which is supported by the Erlang ssh daemon.
See ssh_file for details.

 Host Keys

RSA, DSA (if enabled), ECDSA, ED25519 and ED448 host keys are supported and are
expected to be found in files named ssh_host_rsa_key, ssh_host_dsa_key,
ssh_host_ecdsa_key, ssh_host_ed25519_key and ssh_host_ed448_key.
See ssh_file for details.

 Error Logger and Event Handlers

The ssh application uses the default OTP error logger to
log unexpected errors or print information about special events.

 Supported Specifications and Standards

The supported SSH version is 2.0.

 Algorithms

The actual set of algorithms may vary depending on which OpenSSL crypto library
that is installed on the machine. For the list on a particular installation, use
the command ssh:default_algorithms/0. The user may override the default
algorithm configuration both on the server side and the client side. See the
options preferred_algorithms and
modify_algorithms in the
ssh:daemon/1,2,3 and ssh:connect/3,4
functions.
Supported algorithms are (in the default order):

Key exchange algorithms
	curve25519-sha256
	curve25519-sha256@libssh.org
	curve448-sha512
	ecdh-sha2-nistp521
	ecdh-sha2-nistp384
	ecdh-sha2-nistp256
	diffie-hellman-group-exchange-sha256
	diffie-hellman-group16-sha512
	diffie-hellman-group18-sha512
	diffie-hellman-group14-sha256

The following unsecure SHA1 algorithms are now disabled by default:
	(diffie-hellman-group14-sha1)
	(diffie-hellman-group-exchange-sha1)
	(diffie-hellman-group1-sha1)

They can be enabled with the
preferred_algorithms or
modify_algorithms options. Use
for example the Option value
{modify_algorithms, [{append, [{kex,['diffie-hellman-group1-sha1']}]}]})
Public key algorithms
	ssh-ed25519
	ssh-ed448
	ecdsa-sha2-nistp521
	ecdsa-sha2-nistp384
	ecdsa-sha2-nistp256
	rsa-sha2-512
	rsa-sha2-256

The following unsecure SHA1 algorithms are supported but disabled by
default:
	(ssh-dss)
	(ssh-rsa)

Disabled public key algorithms can be enabled with the
preferred_algorithms or
modify_algorithms options. See
Example 9 in
Configuring algorithms in SSH for a description.
MAC algorithms
	hmac-sha2-512-etm@openssh.com
	hmac-sha2-256-etm@openssh.com
	hmac-sha2-512
	hmac-sha2-256
	hmac-sha1-etm@openssh.com
	hmac-sha1

The following unsecure SHA1 algorithm is disabled by default:
	(hmac-sha1-96)

It can be enabled with the
preferred_algorithms or
modify_algorithms options. Use
for example the Option value
{modify_algorithms, [{append, [{mac,['hmac-sha1-96']}]}]})
Encryption algorithms (ciphers)
	aes256-gcm@openssh.com
	aes256-ctr
	aes192-ctr
	aes128-gcm@openssh.com
	aes128-ctr
	chacha20-poly1305@openssh.com
	aes256-cbc
	aes192-cbc
	aes128-cbc
	3des-cbc

The following unsecure algorithms are disabled by default:
	(AEAD_AES_128_GCM)
	(AEAD_AES_256_GCM)

See the text at the description of
the rfc 5647 further down for more information
regarding AEAD_AES_*_GCM.
Following the internet de-facto standard, the cipher and mac algorithm
AEAD_AES_128_GCM is selected when the cipher aes128-gcm@openssh.com is
negotiated. The cipher and mac algorithm AEAD_AES_256_GCM is selected when the
cipher aes256-gcm@openssh.com is negotiated.
Compression algorithms
	none
	zlib@openssh.com
	zlib

 Unicode support

Unicode filenames are supported if the emulator and the underlying OS supports
it. See file manual page in Kernel for
information about this subject.
The shell and the cli both support unicode.

 RFCs

The following RFCs are supported:
	RFC 4251, The Secure Shell (SSH)
Protocol Architecture.
Except
	9.4.6 Host-Based Authentication
	9.5.2 Proxy Forwarding
	9.5.3 X11 Forwarding

	RFC 4252, The Secure Shell (SSH)
Authentication Protocol.
Except
	9. Host-Based Authentication: "hostbased"

	RFC 4253, The Secure Shell (SSH)
Transport Layer Protocol.
Except
	8.1. diffie-hellman-group1-sha1
	6.6. Public Key Algorithms	ssh-dss
	ssh-rsa

They are disabled by default as they now are regarded insecure, but they can
be enabled with the
preferred_algorithms or
modify_algorithms options. See
Example 8 (diffie-hellman-group1-sha1) and
Example 9 (ssh-dss) in
Configuring algorithms in SSH for descriptions.

	RFC 4254, The Secure Shell (SSH)
Connection Protocol.
Except
	6.3. X11 Forwarding
	7. TCP/IP Port Forwarding

	RFC 4256, Generic Message Exchange
Authentication for the Secure Shell Protocol (SSH).
Except
	num-prompts > 1
	password changing
	other identification methods than userid-password

	RFC 4419, Diffie-Hellman Group Exchange
for the Secure Shell (SSH) Transport Layer Protocol.
Except
	4.1. diffie-hellman-group-exchange-sha1

It is disabled by default as it now is regarded insecure, but it can be
enabled with the
preferred_algorithms or
modify_algorithms options.

	RFC 4716, The Secure Shell (SSH) Public
Key File Format.

	RFC 5647, AES Galois Counter Mode for
the Secure Shell Transport Layer Protocol.
 There is an ambiguity in the synchronized selection of
cipher and mac algorithm. This is resolved by OpenSSH in the ciphers
aes128-gcm@openssh.com and aes256-gcm@openssh.com which are implemented. If
the explicit ciphers and macs AEAD_AES_128_GCM or AEAD_AES_256_GCM are needed,
they could be enabled with the options
preferred_algorithms or
modify_algorithms.
Warning
If the client or the server is not Erlang/OTP, it is the users
responsibility to check that other implementation has the same
interpretation of AEAD_AES_*_GCM as the Erlang/OTP SSH before enabling
them. The aes*-gcm@openssh.com variants are always safe to use since they
lack the ambiguity.

The second paragraph in section 5.1 is resolved as:
	If the negotiated cipher is AEAD_AES_128_GCM, the mac algorithm is set to
AEAD_AES_128_GCM.
	If the negotiated cipher is AEAD_AES_256_GCM, the mac algorithm is set to
AEAD_AES_256_GCM.
	If the mac algorithm is AEAD_AES_128_GCM, the cipher is set to
AEAD_AES_128_GCM.
	If the mac algorithm is AEAD_AES_256_GCM, the cipher is set to
AEAD_AES_256_GCM.

The first rule that matches when read in order from the top is applied

	RFC 5656, Elliptic Curve Algorithm
Integration in the Secure Shell Transport Layer.
Except
	5. ECMQV Key Exchange
	6.4. ECMQV Key Exchange and Verification Method Name
	7.2. ECMQV Message Numbers
	10.2. Recommended Curves

	RFC 6668, SHA-2 Data Integrity
Verification for the Secure Shell (SSH) Transport Layer Protocol
Comment: Defines hmac-sha2-256 and hmac-sha2-512

	Draft-ietf-curdle-ssh-kex-sha2 (work in progress),
Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH).
Deviations:
	diffie-hellman-group1-sha1
	diffie-hellman-group-exchange-sha1
	diffie-hellman-group14-sha1

are not enabled by default as they now are regarded insecure, but are still
supported and can be enabled with the options
preferred_algorithms or
modify_algorithms.

	RFC 8332, Use of RSA Keys with SHA-256
and SHA-512 in the Secure Shell (SSH) Protocol.

	 RFC 8308,
Extension Negotiation in the Secure Shell (SSH) Protocol.
Implemented are:
	The Extension Negotiation Mechanism
	The extension server-sig-algs

	Secure Shell (SSH) Key Exchange Method Using Curve25519 and Curve448

	RFC 8709 Ed25519 and Ed448 public key
algorithms for the Secure Shell (SSH) protocol

 See Also

application

SSH Release Notes

 Ssh 5.2.1

 Fixed Bugs and Malfunctions

	With this change, race condition between connection closing and automatic window adjustment is fixed.
Own Id: OTP-19109 Aux Id: PR-8345

 Ssh 5.2

 Fixed Bugs and Malfunctions

	SSH processes are now assigned labels for troubleshooting purposes.
Own Id: OTP-19017 Aux Id: PR-8249

	With this change, ssh client will automatically adjust transfer window size for commands executed remotely over SSH.
Own Id: OTP-19057 Aux Id: PR-8345, GH-7483

 Improvements and New Features

	The shell now pages long output from the documentation help command (h(Module)), auto completions and the search command.
Own Id: OTP-18846 Aux Id: PR-7845

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Updated types and specs for all API modules.
Own Id: OTP-18961

 Ssh 5.1.4

 Fixed Bugs and Malfunctions

	With this change, owner and group file attributes decoding is fixed and results with value of integer type.
Own Id: OTP-19013 Aux Id: GH-7897, PR-8220

 Ssh 5.1.3

 Fixed Bugs and Malfunctions

	With this change, acceptor_sup is not started for ssh client as it is not needed in that role.
Own Id: OTP-18974

	With this change, more secure algorithms are preferred by ssh and documentation is updated to reflect that.
Own Id: OTP-18986

	With this change, KEX strict terminal message is emitted with debug verbosity.
Own Id: OTP-19002 Aux Id: ERIERL-1041

	Fix reading of password for ssh client when in user_interactive mode.
Own Id: OTP-19007 Aux Id: ERIERL-1049

 Ssh 5.1.2

 Fixed Bugs and Malfunctions

	With this change, Curve25519 and Curve448 KEX methods become most preferred (related to RFC8731).
Own Id: OTP-18964

 Ssh 5.1.1

 Fixed Bugs and Malfunctions

	With this change (being response to CVE-2023-48795), ssh can negotiate "strict
KEX" OpenSSH extension with peers supporting it; also
'chacha20-poly1305@openssh.com' algorithm becomes a less preferred cipher.
If strict KEX availability cannot be ensured on both connection sides,
affected encryption modes(CHACHA and CBC) can be disabled with standard ssh
configuration. This will provide protection against vulnerability, but at a
cost of affecting interoperability. See
Configuring algorithms in SSH.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18897

 Ssh 5.1

 Fixed Bugs and Malfunctions

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Avoid outputting ansi escape sequences to dumb ssh clients.
Own Id: OTP-18861 Aux Id: PR-7627

	With this change, connection handler does not execute socket operations until
it becomes socket owner. Previously errors could occur if connection handler
tried to work with socket whose owner exited.
Own Id: OTP-18869 Aux Id: PR-7849,GH-7571

 Improvements and New Features

	With this change, reverse search works with ssh shell and non dumb terminals.
Own Id: OTP-18730 Aux Id: PR-7499

 Ssh 5.0.1

 Fixed Bugs and Malfunctions

	Added multiline editing support to ssh clients connected through OTP ssh
daemon.
Own Id: OTP-18653 Aux Id: PR-7242

 Ssh 5.0

 Improvements and New Features

	The ssh_cli has been updated to work with the changes introduced in the new
Erlang shell implementation.
Own Id: OTP-18231 Aux Id: OTP-17932 PR-6144

	Typing Ctrl+L in a shell now clears the screen and redraws the current line
instead of only redrawing the current line. To only redraw the current line,
you must now type Alt+L. This brings the behaviour of Ctrl+L closer to how
bash and other shells work.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18285 Aux Id: PR-6262

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

 Ssh 4.15.3.4

 Fixed Bugs and Malfunctions

	With this change, owner and group file attributes decoding is fixed and results with value of integer type.
Own Id: OTP-19013 Aux Id: GH-7897, PR-8220

 Ssh 4.15.3.3

 Fixed Bugs and Malfunctions

	With this change, more secure algorithms are preferred by ssh and documentation is updated to reflect that.
Own Id: OTP-18986

	With this change, KEX strict terminal message is emitted with debug verbosity.
Own Id: OTP-19002 Aux Id: ERIERL-1041

 Ssh 4.15.3.2

 Fixed Bugs and Malfunctions

	With this change, Curve25519 and Curve448 KEX methods become most preferred (related to RFC8731).
Own Id: OTP-18964

 Ssh 4.15.3.1

 Fixed Bugs and Malfunctions

	With this change, connection handler does not execute socket operations until
it becomes socket owner. Previously errors could occur if connection handler
tried to work with socket whose owner exited.
Own Id: OTP-18869 Aux Id: PR-7849,GH-7571

	With this change (being response to CVE-2023-48795), ssh can negotiate "strict
KEX" OpenSSH extension with peers supporting it; also
'chacha20-poly1305@openssh.com' algorithm becomes a less preferred cipher.
If strict KEX availability cannot be ensured on both connection sides,
affected encryption modes(CHACHA and CBC) can be disabled with standard ssh
configuration. This will provide protection against vulnerability, but at a
cost of affecting interoperability. See
Configuring algorithms in SSH.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18897

 Ssh 4.15.3

 Fixed Bugs and Malfunctions

	With this change, PKCS8 formatted private key file is properly decoded and SSH
daemon with such key can be started.
Own Id: OTP-18446 Aux Id: GH-6475

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Ssh 4.15.2

 Fixed Bugs and Malfunctions

	With this change, ssh application does not crash when formatting some of info
reports for unsuccessful connections.
Own Id: OTP-18386 Aux Id: PR-6611

	With this change, ssh does not log extensively long messages.
Own Id: OTP-18417 Aux Id: DAFH-1349,ERIERL-888,IA18357

 Ssh 4.15.1

 Fixed Bugs and Malfunctions

	graceful shutdown of ssh_conection_handler when connection is closed by peer
Own Id: OTP-18326 Aux Id: ERIERL-865

 Ssh 4.15

 Fixed Bugs and Malfunctions

	Handling rare race condition at channel close.
Own Id: OTP-18220 Aux Id: ERIERL-666, ERIERL-661

 Improvements and New Features

	New ssh option no_auth_needed to skip the ssh authentication. Use with
caution!
Own Id: OTP-18134 Aux Id: GH-6021

	This change fixes dialyzer warnings generated for inets/httpd examples
(includes needed adjustment of spec for ssh_sftp module).
Own Id: OTP-18178 Aux Id: ERIERL-833, ERIERL-834, ERIERL-835

	The new function ssh:daemon_replace_options/2 makes it possible to change
the Options in a running SSH server.
Established connections are not affected, only those created after the call to
this new function.
Own Id: OTP-18196

	Add a timeout as option max_initial_idle_time. It closes a connection that
does not allocate a channel within the timeout time.
For more information about timeouts, see the
Timeouts section in the User's Guide
Hardening chapter.
Own Id: OTP-18207 Aux Id: PR-6231

 Ssh 4.14.1

 Fixed Bugs and Malfunctions

	Binaries can be limited in logs with the parameter max_log_item_len. The
default value is 500 bytes.
Own Id: OTP-18094

 Ssh 4.14

 Improvements and New Features

	The representation of Edward curves (ed25519 and ed448) inside ssh had a
temporary representation (ed_pri and ed_pub).
That is now changed to the public_key form. See the manual for more
information.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17920

	Former internal function ssh_file:extract_public_key/1 documented publicly.
Internally it was previously in ssh_transport.
Own Id: OTP-18079 Aux Id: GH-5767

 Ssh 4.13.2.6

 Fixed Bugs and Malfunctions

	With this change, more secure algorithms are preferred by ssh and documentation is updated to reflect that.
Own Id: OTP-18986

	With this change, KEX strict terminal message is emitted with debug verbosity.
Own Id: OTP-19002 Aux Id: ERIERL-1041

	With this change, owner and group file attributes decoding is fixed and results with value of integer type.
Own Id: OTP-19013 Aux Id: GH-7897, PR-8220

 Ssh 4.13.2.5

 Fixed Bugs and Malfunctions

	With this change, Curve25519 and Curve448 KEX methods become most preferred (related to RFC8731).
Own Id: OTP-18964

 Ssh 4.13.2.4

 Fixed Bugs and Malfunctions

	With this change, connection handler does not execute socket operations until
it becomes socket owner. Previously errors could occur if connection handler
tried to work with socket whose owner exited.
Own Id: OTP-18869 Aux Id: PR-7849,GH-7571

	With this change (being response to CVE-2023-48795), ssh can negotiate "strict
KEX" OpenSSH extension with peers supporting it; also
'chacha20-poly1305@openssh.com' algorithm becomes a less preferred cipher.
If strict KEX availability cannot be ensured on both connection sides,
affected encryption modes(CHACHA and CBC) can be disabled with standard ssh
configuration. This will provide protection against vulnerability, but at a
cost of affecting interoperability. See
Configuring algorithms in SSH.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18897

 Ssh 4.13.2.3

 Fixed Bugs and Malfunctions

	With this change, error logging related crashes in ssh_connection_handler
module are fixed.
Own Id: OTP-18620 Aux Id: OTP-18386,PR-6611

 Ssh 4.13.2.2

 Fixed Bugs and Malfunctions

	With this change, ssh application does not crash when formatting some of info
reports for unsuccessful connections.
Own Id: OTP-18386 Aux Id: PR-6611

	With this change, ssh does not log extensively long messages.
Own Id: OTP-18417 Aux Id: DAFH-1349,ERIERL-888,IA18357

 Ssh 4.13.2.1

 Fixed Bugs and Malfunctions

	Binaries can be limited in logs with the parameter max_log_item_len. The
default value is 500 bytes.
Own Id: OTP-18094

 Ssh 4.13.2

 Fixed Bugs and Malfunctions

	Fix makefile dependency bugs.
Own Id: OTP-17847 Aux Id: PR-5574 GH-5548

	Fixed faulty OpenSSH decoding of Ed25519/Ed448 keys in the OpenSSH format
openssh_key_v1.
Own Id: OTP-17868 Aux Id: PR-5520

	Correction of ssh_file typing, specially for the experimental openssh-key-v1
encoding.
Own Id: OTP-17912 Aux Id: GH-5680

	Improper tag for private ED keys when encoding with ssh:encode/2.
The tuple had ed_priv as first element, but should have had ed_pri. This
is now corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17928 Aux Id: PR-5679

 Improvements and New Features

	Add support for Ed25519/Ed448 SSH host keys in the RFC 4716 format
("-----BEGIN EC PRIVATE KEY-----") generated by for example openssl or via
Erlang functions (i.e. public_key:generate_key({namedCurve, ed25519})).
Ed25519 SSH host keys generated by ssh-keygen was, and are still, supported.
Own Id: OTP-17857 Aux Id: PR-5532

 Ssh 4.13.1

 Fixed Bugs and Malfunctions

	The ssh sever parallel_login option was missing in OTP-24
Own Id: OTP-17850 Aux Id: ERIERL-764

 Ssh 4.13

 Fixed Bugs and Malfunctions

	The value of the connect_timeout option is now used as default value for the
negotiation timeout.
Own Id: OTP-17707 Aux Id: ERIERL-706

 Improvements and New Features

	Add better error handling in connect/2,3,4. Detect incorrect arguments and
return an informative error tuple instead of throwing a function_clause or
similar.
Own Id: OTP-17515 Aux Id: ERIERL-648

	Make ssh algorithm selection better handle dynamic changes changes in crypto
fips mode.
Own Id: OTP-17795

 Ssh 4.12.5

 Fixed Bugs and Malfunctions

	Fixed a race condition in the acceptor loop: if a client disconnected
immediately after the tcp connect, the server could cease handling connection
on that address:port.
Own Id: OTP-17764 Aux Id: ERIERL-726

 Ssh 4.12.4

 Fixed Bugs and Malfunctions

	Fixed that a slow start (>30s) of a client subsystem could cause a log entry
with the password.
Own Id: OTP-17390 Aux Id: ERIERL-648

	Fixed an error when running as an sftp server and a client requests a
directory contents listing.
The fix is to handle the error code {error, eacces} as {error, enoent} in
the ssh_sftpd:get_attrs/5 internal function; that is, just skip it.
Own Id: OTP-17586 Aux Id: GH-5014

 Improvements and New Features

	The "Key exchange failed" Info Report is now more informative.
Own Id: OTP-17450 Aux Id: ERIERL-655

 Ssh 4.12.3

 Fixed Bugs and Malfunctions

	Filter out sensitive data (passwords etc) from progress reports and supervisor
reports.
Own Id: OTP-17468 Aux Id: ERIERL-656

 Ssh 4.12.2

 Fixed Bugs and Malfunctions

	Avoid an extra blank line in the ssh known_hosts file
Own Id: OTP-17427

 Ssh 4.12.1

 Improvements and New Features

	Add missing known_hosts and authorized_keys file types to
ssh_file:decode/2 and ssh_file:encode/2.
Own Id: OTP-17397

 Ssh 4.12

 Fixed Bugs and Malfunctions

	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

	The send window handling is changed to not initialize a too large window on
some occasions.
Own Id: OTP-17353

 Improvements and New Features

	Removed usage of erlang:is_port/1 from the SSH implementation.
Own Id: OTP-16750

	Internal connection setup refactoring.
Own Id: OTP-17051

	Refactor SSH fsm into a (hopefully) more comprehensible set of gen_statem
callback-files.
Own Id: OTP-17140

	The RSA SHA1 sign/verify variants are disabled by default. That is, ssh-rsa is
disabled by default as well as the SHA1 sign/verify with RSA keys from id_rsa
and ssh_host_rsa_key. All SHA2 sign/verify are enabled by default.
The reason is that SHA1 is now considered easy to break.
To enable RSA with SHA1, for example for a very old and unsafe peer, see
Example 9 in the User's Guide chapter
Configuring algorithms in SSH.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17259 Aux Id: OTP-16511, ERIERL-619

	Adapt ssh supervisors to the new 'significant' and 'auto_shutdown' flags in
supervisor.
Own Id: OTP-17322 Aux Id: PR-4638, EEP-56, OTP-17334

	The functions public_key:ssh_encode/2, public_key:ssh_decode/2,
public_key:ssh_hostkey_fingerprint/1 and public_key:ssh_hostkey_fingerprint/2
are deprecated.
Replacement functions are available in SSH, see the
Deprecations chapter in the
Erlang/OTP documentation.
Own Id: OTP-17352

 Ssh 4.11.1.7

 Fixed Bugs and Malfunctions

	With this change (being response to CVE-2023-48795), ssh can negotiate "strict KEX" OpenSSH extension with peers supporting it; also 'chacha20-poly1305@openssh.com' algorithm becomes a less preferred cipher.
If strict KEX availability cannot be ensured on both connection sides, affected encryption modes(CHACHA and CBC) can be disabled with standard ssh configuration. This will provide protection against vulnerability, but at a cost of affecting interoperability. See Configuring algorithms in SSH User's Guide.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18897

	With this change, KEX strict terminal message is emitted with debug verbosity.
Own Id: OTP-19002 Aux Id: ERIERL-1041

 Ssh 4.11.1.6

 Fixed Bugs and Malfunctions

	Binaries can be limited in logs with the parameter max_log_item_len. The
default value is 500 bytes.
Own Id: OTP-18094

 Ssh 4.11.1.5

 Fixed Bugs and Malfunctions

	Fixed problem with blocked server after multiple restarts. Applies to daemons
with options {parallel_login,true} and also {max_sessions, int()>0}.
Own Id: OTP-17835 Aux Id: ERIERL-721

 Ssh 4.11.1.4

 Fixed Bugs and Malfunctions

	The value of the connect_timeout option is now used as default value for the
negotiation timeout.
Own Id: OTP-17707 Aux Id: ERIERL-706

 Ssh 4.11.1.3

 Fixed Bugs and Malfunctions

	Filter out sensitive data (passwords etc) from progress reports and supervisor
reports.
Own Id: OTP-17468 Aux Id: ERIERL-656

 Improvements and New Features

	The "Key exchange failed" Info Report is now more informative.
Own Id: OTP-17450 Aux Id: ERIERL-655

 Ssh 4.11.1.2

 Fixed Bugs and Malfunctions

	Avoid an extra blank line in the ssh known_hosts file
Own Id: OTP-17427

 Ssh 4.11.1.1

 Fixed Bugs and Malfunctions

	Fixed that a slow start (>30s) of a client subsystem could cause a log entry
with the password.
Own Id: OTP-17390 Aux Id: ERIERL-648

 Ssh 4.11.1

 Fixed Bugs and Malfunctions

	The idle_time timer was not cancelled when a channel was opened within the
timeout time on an empty connection that have had channels previously.
Own Id: OTP-17279

 Ssh 4.11

 Improvements and New Features

	The long name field in SSH_FXP_NAME responses to display file information in
sftp version 3 now contains the expanded format defined in the sftp draft. It
is similar to what is returned by "ls -l" on Unix systems.
Own Id: OTP-17197 Aux Id: PR- 3049

 Ssh 4.10.8

 Fixed Bugs and Malfunctions

	Don't timeout slow connection setups and tear-downs. A rare crash risk for the
controller is also removed.
Own Id: OTP-17173 Aux Id: ERIERL-581

 Ssh 4.10.7

 Fixed Bugs and Malfunctions

	The SSH daemon erroneously replaced LF with CRLF also when there was no pty
requested from the server.
Own Id: OTP-17108 Aux Id: ERL-1442

 Ssh 4.10.6

 Fixed Bugs and Malfunctions

	Fixed problems in the ssh cli/shell handling. Most important are:
	the ssh:shell function did sometimes cause the input to be echoed twice,

	the ssh:shell function didn't transfer the LANG and LC_ALL shell variables
to the connected server which sometimes made Unicode handling erroneous,

	Unicode was not always transferred correctly to and from the peer.

Own Id: OTP-16799

	The SSH protocol message SSH_MSG_DISCONNECT was sometimes sent instead of
SSH_MSG_CHANNEL_FAILURE
Own Id: OTP-16900

	The ssh_cli module now always sends the exit-status to connected clients so
they can use that to check for successful command execution.
Own Id: OTP-16908 Aux Id: PR-2753

 Improvements and New Features

	A new option pk_check_user enables checking
of the client's user name in the server when doing public key authentication.
Own Id: OTP-16889

 Ssh 4.10.5

 Fixed Bugs and Malfunctions

	An ssh-client can take an accepted socket from a listening socket and do an
ssh:connect/2 on it.
Multiple clients on sockets accepted from the same listening socket had
stopped working. This is corrected now.
Own Id: OTP-17021 Aux Id: ERIERL-567

 Ssh 4.10.4.1

 Fixed Bugs and Malfunctions

	Filter out sensitive data (passwords etc) from progress reports and supervisor
reports.
Own Id: OTP-17468 Aux Id: ERIERL-656

 Ssh 4.10.4

 Fixed Bugs and Malfunctions

	The inet option raw was not passed on from the ssh option list to inet.
Own Id: OTP-17016 Aux Id: ERIERL-562

 Ssh 4.10.3

 Fixed Bugs and Malfunctions

	A supervisor sub-tree could be left if the connection handler process is
brutally killed. This will make the max_sessions checking option to count the
existing sessions erroneously and could finally block further sessions.
Own Id: OTP-17006 Aux Id: ERIERL-556

 Ssh 4.10.2

 Fixed Bugs and Malfunctions

	Fix decoder bug.
Own Id: OTP-16904

 Ssh 4.10.1

 Fixed Bugs and Malfunctions

	Fixed a bug when a message to ssh-agent was divided into separate packets.
Own Id: OTP-16761 Aux Id: PR-2679

	Fix a bug that could crash the cli server if a too large cli-window was
requested from the client.
Own Id: OTP-16791 Aux Id: ERIERL-520

 Improvements and New Features

	Increased test coverage.
Own Id: OTP-14106

	A chapter about hardening the OTP SSH is added to the User's
Guide.
Own Id: OTP-16411

	The internal Diffie-Hellman high level API for key generation was slow in old
and by OpenSSL now unsupported cryptolib versions (1.0.1 and earlier).
If such a cryptolib is used anyhow, the low-level API is used internally in
the crypto application.
Own Id: OTP-16774

	A new timeout is defined for daemons:
hello_timeout.
The timeout is supposed to be used as a simple
DoS attack protection. It closes an
incoming TCP-connection if no valid first SSH message is received from the
client within the timeout limit after the TCP initial connection setup.
The initial value is 30s by compatibility reasons, but could be lowered if
needed, for example in the code or in a config file.
Own Id: OTP-16803

 Ssh 4.10

 Fixed Bugs and Malfunctions

	Fix error in ssh_sftpd typespec.
Own Id: OTP-16363

 Improvements and New Features

	The plug-in file ssh_file.erl, that is responsible for default file handling,
is re-factored, optimized and re-written.
Own Id: OTP-11688 Aux Id: OTP-12699

	OpenSSH 6.5 introduced a new file representation of keys called
openssh-key-v1.
OTP/SSH had an experimental implementation of this format. That implementation
is now improved and supported with the exception of handling encrypted keys.
Own Id: OTP-15434

	TCP/IP port forwarding, a.k.a tunneling a.k.a tcp-forward/direct-tcp is
implemented. In the OpenSSH client, this corresponds to the options -L and -R.
The client or server listens to a specified socket, and when something
connects to it with TCP/IP, that connection is forwarded in an encrypted
tunnel to the peer. The peer then connects to a predefined IP/port pair and
then acts as a proxy.
See the manual, ssh:tcpip_tunnel_to_server/6 and
ssh:tcpip_tunnel_from_server/6.
The functionality is disabled per default but can be enabled when starting a
daemon.
Own Id: OTP-15998 Aux Id: PR-2376, PR-2368

	The client-side of the supervisor tree (under sshc_sup) was previously not
complete; the channel handling processes were handled with links but had no
supervisors.
This is now corrected with a client-side supervisor tree under sshc_sup,
similar to the server-side supervisor tree under sshd_sup.
Own Id: OTP-16026 Aux Id: PR-2368, (OTP-15998)

	The extension
posix-rename@openssh.com
is added to the ssh/sftp rename operation.
Own Id: OTP-16289 Aux Id: PR-2448

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

	The default known_hosts file handling is improved to include ports.
The handling of the contents in that file is updated to support the
full syntax, with
exception of 1) the wildcard '?', 2) wildcards in canonical names and 3) the
option '@cert-authority'
Own Id: OTP-16506

	The MAC (Message Authorization Code) algorithms
	hmac-sha1-etm@openssh.com
	hmac-sha2-256-etm@openssh.com
	hmac-sha2-512-etm@openssh.com

are implemented.
Own Id: OTP-16508

	The key-exchange algorithms 'diffie-hellman-group14-sha1' and
'diffie-hellman-group-exchange-sha1' are disabled per default. The reason is
that SHA1 now is considered insecure.
They can be enabled if needed, see SSH (App).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16509

	The public key algorithm 'ssh-dss' is disabled per default. The reason is
that it is now considered as insecure.
It can be enabled if needed, see SSH (App).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16510

	The public key 'ssh-rsa' is now considered as insecure because of its usage
of SHA1.
It is therefore deprecated and will no longer be enabled per default in
OTP-24.0.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16511

	An option optimize (optimize_key_lookup)
is introduced for the file interface ssh_file.erl
The option enables the user to select between the default handling which is
fast but memory consuming vs memory efficient but not as fast. The effect
might be observable only for large files.
See the manual for ssh_file:is_host_key/5 and ssh_file:is_auth_key/3.
Own Id: OTP-16512

	The ssh agent is now implemented in the ssh_agent key callback module.
Enable with the the option {key_cb, {ssh_agent, []}} in for example
ssh:connect/3.
See the ssh_agent manual for details.
Own Id: OTP-16513

	Algorithm configuration could now be done in a .config file.
This is useful for example to enable an algorithm that is disabled by default.
It could now be enabled in an .config-file without changing the code,
See the SSH User's Guide chapter "Configuration in SSH".
Own Id: OTP-16540

	Documented which gen_tcp socket options can't be used in calls to ssh:connect
and ssh:daemon.
Own Id: OTP-16589

	Added kb_int_fun_4() to the
authentication_daemon_options() to
enable generating dynamic keyboard-interactive prompts from the user's state
returned from the authentication fun pwdfun_4().
Own Id: OTP-16622 Aux Id: PR-2604

 Ssh 4.9.1.5

 Fixed Bugs and Malfunctions

	With this change (being response to CVE-2023-48795), ssh can negotiate "strict KEX" OpenSSH extension with peers supporting it; also 'chacha20-poly1305@openssh.com' algorithm becomes a less preferred cipher.
If strict KEX availability cannot be ensured on both connection sides, affected encryption modes(CHACHA and CBC) can be disabled with standard ssh configuration. This will provide protection against vulnerability, but at a cost of affecting interoperability. See Configuring algorithms in SSH User's Guide.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18897

	With this change, KEX strict terminal message is emitted with debug verbosity.
Own Id: OTP-19002 Aux Id: ERIERL-1041

 Ssh 4.9.1.4

 Fixed Bugs and Malfunctions

	The value of the connect_timeout option is now used as default value for the
negotiation timeout.
Own Id: OTP-17707 Aux Id: ERIERL-706

 Ssh 4.9.1.3

 Fixed Bugs and Malfunctions

	The idle_time timer was not cancelled when a channel was opened within the
timeout time on an empty connection that have had channels previously.
Own Id: OTP-17279

 Ssh 4.9.1.2

 Fixed Bugs and Malfunctions

	Fix decoder bug.
Own Id: OTP-16904

 Ssh 4.9.1.1

 Fixed Bugs and Malfunctions

	Fix a bug that could crash the cli server if a too large cli-window was
requested from the client.
Own Id: OTP-16791 Aux Id: ERIERL-520

 Improvements and New Features

	A new timeout is defined for daemons: hello_timeout.
It closes an incoming TCP-connection if no valid 1st message is received from
the client within the timeout limit.
Own Id: OTP-16803

 Ssh 4.9.1

 Fixed Bugs and Malfunctions

	Potential hazard between re-keying decision and socket close.
Own Id: OTP-16462 Aux Id: ERIERL-464

 Ssh 4.9

 Fixed Bugs and Malfunctions

	Unicode problems for ssh_sftp:write fixed.
Own Id: OTP-16377

 Improvements and New Features

	Changes to the internal api of the experimental ssh_dbg tool.
Own Id: OTP-16353

	The new functions ssh:set_sock_opts/2 and ssh:get_sock_opts/2 sets and
reads option values for the underlying TCP stream.
Own Id: OTP-16485

 Ssh 4.8.2

 Fixed Bugs and Malfunctions

	Fixed that ssh_connection:send could allocate a large amount of memory if
given an iolist() as input data.
Own Id: OTP-16373

	Safe atom conversions.
Own Id: OTP-16375

	Constant time comparisons added.
Own Id: OTP-16376

 Ssh 4.8.1

 Fixed Bugs and Malfunctions

	The ssh cli (e.g shell) server behaved strangely when characters were inserted
in a string such that the last characters tried to wrap the line.
Own Id: OTP-14849 Aux Id: ERL-545

	If an OTP SSH server was serving an "exec" request and the executed code used
Erlang standard_io for input/output, the I/O was erroneously handled by the
server's group leader, so the I/O turned up in the the server's Erlang shell
(if any). The user at the client side did therefore not see that I/O.
This is corrected now, so the client - for example the ssh OS shell command -
handles the I/O. The user could send input to the server side exec handling
code by writing on the terminal, and server side output from for example
io:format is presented on the terminal - not only the functional result.
NOTE 1: Servers executing exec requests with the old, undocumented ways of
specifying the custom exec handler is not changed. Changed are only the two
cases where the server's 'exec' option either:
	is not specified (i.e. using the default shell) or,
	it has the {direct, fun(...) -> ... end} value format.

NOTE 2: Previously an end-of-line marker was appended on the result and error
reports at the client side. They are removed now and the error reports are
slightly enhanced.
TECHNICAL DETAILS: The server's device standard_input receives data events
from the exec request's channel, and the device standard_output is sending
its data by data events to the client on that channel. The result is that
standard_io is now performed by the client's group leader.
Own Id: OTP-15417 Aux Id: OTP-16108

	The functions ssh:shell/1,2,3 left the connection open when they returned.
That leakage is fixed now.
Own Id: OTP-16047

	Corrected that an Erlang SSH server could return the status code 4294967295
instead of 255 on some errors of an exec request.
Own Id: OTP-16123

 Improvements and New Features

	Internal simplification of ssh_sftp/ssh_xfer
Own Id: OTP-15972

	The documentation of One-Time Execution in
the User's Guide is updated with more examples.
Own Id: OTP-16108 Aux Id: OTP-15417

	The new value 'disabled' is introduced in the SSH daemon options 'exec' and
'shell'. Previously they lacked a clear way of disabling them.
Own Id: OTP-16113

	The old algorithms 'aes192_cbc', 'aes256_cbc' and 'hmac-sha1-96' are added for
compatibility with older peers.
The mac 'hmac-sha1-96' is nowadays not recommended and must therefore be
explicitly enabled. Use for example the Option value
{modify_algorithms, [{append, [{mac,['hmac-sha1-96']}]}]}
Own Id: OTP-16170

 Ssh 4.8

 Fixed Bugs and Malfunctions

	Fixed wrong type definition for the daemon option subsystems.
Own Id: OTP-15820

	Fixed a possible SSH logging crash if there was a problem in an early stage of
session setup.
Own Id: OTP-15962 Aux Id: ERL-990

 Improvements and New Features

	The documentation for the modules ssh_connection, ssh_sftp and ssh_sftpd are
now generated from the -spec:s.
Own Id: OTP-15395

	Internal cleanup including removal of the internal file ssh_userauth.hrl.
Own Id: OTP-15876 Aux Id: PR-2255, PR-2256

	Removed unused definitions in ssh.hrl.
Own Id: OTP-15929 Aux Id: PR-2297

	Removed unused fields in the internal #connection{} record.
Own Id: OTP-15984

	To get information of a connection_ref() from for example ssh:connect/3,
there was previously one function available namely ssh:connection_info/2.
This ticket adds ssh:connection_info/1 which returns all information.
For daemons (servers) started with for example ssh:daemon/2 the function
ssh:daemon_info/1 returning all information was available. This ticket adds
ssh:daemon_info/2 which returns only the information specified in the second
argument.
The info of connections and of daemons now also includes the item 'options'.
Only those options that does not have their default values are returned.
For a connection also the items 'algorithms' and 'channels' are added.
Own Id: OTP-16040

 Ssh 4.7.7

 Improvements and New Features

	SSH uses the new crypto API.
Own Id: OTP-15673

 Ssh 4.7.6.6

 Fixed Bugs and Malfunctions

	The idle_time timer was not cancelled when a channel was opened within the
timeout time on an empty connection that have had channels previously.
Own Id: OTP-17279

 Ssh 4.7.6.5

 Fixed Bugs and Malfunctions

	Fix decoder bug.
Own Id: OTP-16904

 Ssh 4.7.6.4

 Fixed Bugs and Malfunctions

	Potential hazard between re-keying decision and socket close.
Own Id: OTP-16462 Aux Id: ERIERL-464

 Ssh 4.7.6.3

 Fixed Bugs and Malfunctions

	Fixed that ssh_connection:send could allocate a large amount of memory if
given an iolist() as input data.
Own Id: OTP-16373

	Safe atom conversions.
Own Id: OTP-16375

	Constant time comparisons added.
Own Id: OTP-16376

 Ssh 4.7.6.2

 Fixed Bugs and Malfunctions

	The ssh cli (e.g shell) server behaved strangely when characters were inserted
in a string so that the last characters tried to wrap the line.
Own Id: OTP-14849 Aux Id: ERL-545

 Ssh 4.7.6.1

 Fixed Bugs and Malfunctions

	Fixed a possible SSH logging crash if there was a problem in an early stage of
session setup.
Own Id: OTP-15962 Aux Id: ERL-990

 Ssh 4.7.6

 Improvements and New Features

	When an SSH server receives the very first message on a new TCP connection,
and that message is not the expected one, the 64 first bytes of the received
message are now dumped in the INFO REPORT that reports the Protocol Error.
This facilitates the debugging of who sends the bad message or of detecting a
possible port scanning.
Own Id: OTP-15772

 Ssh 4.7.5

 Fixed Bugs and Malfunctions

	The callback ssh_channel:init/1 was missing in OTP-21
Own Id: OTP-15762

	If a client was connected to an server on an already open socket, the callback
fun(PeerName,FingerPrint) in the accept_callback option passed the local
name in the argument PeerName instead of the remote name.
Own Id: OTP-15763

 Ssh 4.7.4

 Fixed Bugs and Malfunctions

	SSH sftp daemon now accepts an SSH_FXP_STAT message encoded according to the
wrong sftp version. Some clients sends such messages.
Own Id: OTP-15498 Aux Id: ERL-822, PR-2077

 Ssh 4.7.3

 Fixed Bugs and Malfunctions

	Fixed port leakage if a ssh:daemon call failed.
Own Id: OTP-15397 Aux Id: ERL-801

 Ssh 4.7.2

 Fixed Bugs and Malfunctions

	Incompatibility with newer OpenSSH fixed. Previously versions 7.8 and later
could cause Erlang SSH to exit.
Own Id: OTP-15413

	The 'exec' option for ssh daemons had wrong format in the documentation.
Own Id: OTP-15416

 Improvements and New Features

	Added public key methods ssh-ed25519 and ssh-ed448.
Requires OpenSSL 1.1.1 or higher as cryptolib under the OTP application
crypto.
Own Id: OTP-15094 Aux Id: OTP-15419

	The SSH property tests are now adapted to the PropEr testing tool.
Own Id: OTP-15312

	The term "user" was not documented in the SSH app. A new chapter with
terminology is added to the User's Manual where the term "user" is defined.
A reference manual page about the module ssh_file is also added. This is the
default callback module for user's keys, host keys etc.
Own Id: OTP-15314

	Host and user key checking is made more robust.
Own Id: OTP-15424

 Ssh 4.7.1

 Improvements and New Features

	Extended the undocumented ssh_dbg debug module with an api for a circular
trace buffer. This makes it easy to record the last low-level events before an
error is detected. It is intended for solving difficult errors.
Own Id: OTP-15020

	The key exchange methods 'curve25519-sha256@libssh.org',
'curve25519-sha256' and 'curve448-sha512' are implemented. The last two
are defined in https://tools.ietf.org/html/draft-ietf-curdle-ssh-curves
They all depends on that OpenSSL 1.1.1 or higher is used as cryptolib.
Own Id: OTP-15133 Aux Id: OTP-15240

	The cipher 'chacha20-poly1305@openssh.com' is now supported if OpenSSL 1.1.1
or higher is used as cryptolib.
Own Id: OTP-15209 Aux Id: OTP-15164

 Ssh 4.7

 Fixed Bugs and Malfunctions

	If the daemon port listener is restarted, it could potentially fail with
eaddrinuse if the timing is unlucky. It will now retry and exponentially
back off the listener restart a few times before failing.
Own Id: OTP-14955

	A channel callback module always got the module name as reason in a call to
terminate. Now it will get the proper Reason, usually 'normal'.
Own Id: OTP-15084

 Improvements and New Features

	The option exec has new option values defined to make it much more easy to
implement an own exec server.
An option called exec for daemons implementing the handling of 'exec'
requests has existed a long time but has been undocumented. The old
undocumented value - as well as its behavior - is kept for compatibility
EXCEPT that error messages are changed and are sent as "stderror" text.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14851

	Updated ssh_connection:shell/2 documentation.
Own Id: OTP-14880

	The experimental ssh_dbg module is completely re-written. Its purpose is to
make tracing and debugging easier on deployed systems.
Own Id: OTP-14896

	The SSH supervisor structure has been slightly changed. This makes stopping
the ssh application considerably faster if there are open connections. This is
important in for example restarts.
Own Id: OTP-14988

	The type specifications in SSH are completely reworked and the following types
are renamed:
ssh:ssh_connection_ref() is changed to
ssh:connection_ref(),
ssh:ssh_daemon_ref() is changed to
ssh:daemon_ref(),
ssh:ssh_channel_id() is changed to
ssh:channel_id().
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15002 Aux Id: OTP-15030

	The internal timer handling in SSH is now based on the gen_statem timers.
Own Id: OTP-15019

	Removed the undocumented and unused modules ssh_client_key.erl and
ssh_server_key.erl.
Own Id: OTP-15028

	The Reference Manual pages are partly updated.
The ssh page is now generated from specs and types, is restructured and is
partly rephrased.
The ssh_channel, ssh_connection, ssh_client_key_api, ssh_server_key_api and
ssh_sftp pages are updated with links, correct type names and some minor
changes.
Own Id: OTP-15030 Aux Id: OTP-15002

	The behaviors ssh_channel and ssh_daemon_channel are renamed to
ssh_client_channel and ssh_server_channel respectively.
The old modules are kept for compatibility but should preferably be replaced
when updating callback modules referring them.
Own Id: OTP-15041

	New test suite for channels.
Own Id: OTP-15051

	The rekey_limit option could now set the max time as well as the previously
max data amount.
Own Id: OTP-15069 Aux Id: ERL-617

	Changed process exit supervision from links to monitors.
Own Id: OTP-15082

	Better handling of misbehaving channel callback modules.
Own Id: OTP-15083

	A new moduli file is generated. This file is used for the recommended
diffie-hellman-group-exchange-sha256 key exchange algorithm in SSH.
Own Id: OTP-15113

 Ssh 4.6.9.7

 Fixed Bugs and Malfunctions

	Fixed possible hanging in ssh_sftp:stop_channel/1.
Own Id: OTP-16507 Aux Id: ERIERL-470

 Ssh 4.6.9.6

 Fixed Bugs and Malfunctions

	Fixed that ssh_connection:send could allocate a large amount of memory if
given an iolist() as input data.
Own Id: OTP-16373

	Safe atom conversions.
Own Id: OTP-16375

	Constant time comparisons added.
Own Id: OTP-16376

 Ssh 4.6.9.5

 Fixed Bugs and Malfunctions

	The ssh cli (e.g shell) server behaved strangely when characters were inserted
in a string so that the last characters tried to wrap the line.
Own Id: OTP-14849 Aux Id: ERL-545

 Ssh 4.6.9.4

 Fixed Bugs and Malfunctions

	If a client was connected to an server on an already open socket, the callback
fun(PeerName,FingerPrint) in the accept_callback option passed the local
name in the argument PeerName instead of the remote name.
Own Id: OTP-15763

 Ssh 4.6.9.3

 Fixed Bugs and Malfunctions

	Fixed port leakage if a ssh:daemon call failed.
Own Id: OTP-15397 Aux Id: ERL-801

 Ssh 4.6.9.2

 Fixed Bugs and Malfunctions

	Incompatibility with newer OpenSSH fixed. Previously versions 7.8 and later
could cause Erlang SSH to exit.
Own Id: OTP-15413

 Ssh 4.6.9.1

 Fixed Bugs and Malfunctions

	SFTP clients reported the error reason "" if a non-OTP sftp server was
killed during a long file transmission.
Now the signal name (for example "KILL") will be the error reason if the
server's reason is empty.
The documentation also lacked type information about this class of errors.
Own Id: OTP-15148 Aux Id: ERIERL-194

	Fix ssh_sftp decode error for sftp protocol version 4
Own Id: OTP-15149 Aux Id: ERIERL-199

 Ssh 4.6.9

 Fixed Bugs and Malfunctions

	Host key hash erroneously calculated for clients following draft-00 of RFC
4419, for example PuTTY
Own Id: OTP-15064

	Renegotiation could fail in some states
Own Id: OTP-15066

 Ssh 4.6.8

 Fixed Bugs and Malfunctions

	An ssh_sftp server (running version 6) could fail if it is told to remove a
file which in fact is a directory.
Own Id: OTP-15004

	Fix rare spurious shutdowns of ssh servers when receiving {'EXIT',_,normal}
messages.
Own Id: OTP-15018

 Ssh 4.6.7

 Fixed Bugs and Malfunctions

	Fix bad spec in ssh.hrl: double_algs().
Own Id: OTP-14990

 Ssh 4.6.6

 Fixed Bugs and Malfunctions

	Remove a blocking risk when a channel is closed and an operation is tried on
that channel after at least a second's time gap.
Own Id: OTP-14939

 Improvements and New Features

	Added ssh_compat_SUITE.
This suite contains a number of interoperability tests mainly with OpenSSH.
The tests start docker containers with different OpenSSH and
OpenSSL/LibreSSLcryptolib versions and performs a number of tests of supported
algorithms.
All login methods and all user's public key types are tested both for the
client and the server.
All algorithms for kex, cipher, host key, mac and compressions are tested with
a number of exec and sftp tests, both for the client and the server.
Own Id: OTP-14194 Aux Id: OTP-12487

	Default exec is disabled when a user-defined shell is enabled.
Own Id: OTP-14881

 Ssh 4.6.5

 Fixed Bugs and Malfunctions

	Adjusted supervisor timeouts
Own Id: OTP-14907

	Remove ERROR messages for slow process exits
Own Id: OTP-14930

 Improvements and New Features

	Add option save_accepted_host to ssh:connection. This option, if set to
false, inhibits saving host keys to e.g the file known_hosts.
Own Id: OTP-14935

 Ssh 4.6.4

 Fixed Bugs and Malfunctions

	Fix problem with OpenSSH 7.2 (and later) clients that has used sha1 instead of
sha2 for rsa-sha-256/512 user's public keys.
Own Id: OTP-14827 Aux Id: ERL-531

 Ssh 4.6.3

 Fixed Bugs and Malfunctions

	Passphrase option for ecdsa public keys was missing.
Own Id: OTP-14602

 Improvements and New Features

	The host and user public key handling is hardened so that a faulty plugin
can't deliver a key of wrong type.
Better checks in the server of the available hostkey's types at start and at
each accept.
Better checks in the client of the available user public key types at connect.
Own Id: OTP-14676 Aux Id: ERIERL-52, OTP-14570

	SSH can now fetch the host key from the private keys stored in an Engine. See
the crypto application for details about Engines.
Own Id: OTP-14757

 Ssh 4.6.2

 Fixed Bugs and Malfunctions

	Trailing white space was removed at end of the hello-string. This caused
interoperability problems with some other ssh-implementations (e.g OpenSSH
7.3p1 on Solaris 11)
Own Id: OTP-14763 Aux Id: ERIERL-74

	Fixes that tcp connections that was immediately closed (SYN, SYNACK, ACK, RST)
by a client could be left in a zombie state.
Own Id: OTP-14778 Aux Id: ERIERL-104

 Ssh 4.6.1

 Fixed Bugs and Malfunctions

	Fixed broken printout
Own Id: OTP-14645

 Improvements and New Features

	Disable aes_gcm ciphers if peer is OpenSSH 6.2 which is known to have trouble
with them in some cases.
Own Id: OTP-14638

 Ssh 4.6

 Fixed Bugs and Malfunctions

	Enables the ssh_io module to also accept binary values when reading
standard_io instead of getting stuck in the receive clause.
Own Id: OTP-14506 Aux Id: PR1503

	Previously, the file owner access permission in response to
ssh_sftp:read_file_info/2 function was always read_write. With this fix, the
actual value of file owner access permission is added to the returning record.
That value is calculated from file mode value.
Own Id: OTP-14550 Aux Id: PR1533

 Improvements and New Features

	A new option modify_algorithms is implemented. It enables specifying changes
on the default algorithms list. See the reference manual and the SSH User's
Guide chapter "Configuring algorithms in SSH".
Own Id: OTP-14568

 Ssh 4.5.1

 Fixed Bugs and Malfunctions

	All unknown options are sent to the transport handler regardless of type.
Own Id: OTP-14541 Aux Id: EIRERL-63

 Ssh 4.5

 Improvements and New Features

	The internal handling of SSH options is re-written.
Previously there were no checks if a client option was given to a daemon or
vice versa. This is corrected now. If your code has e.g. a client-only option
in a call to start a daemon, the call will fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12872

	Modernization of key exchange algorithms. See draft-ietf-curdle-ssh-kex-sha2
for a discussion.
Removed an outdated weak algorithm and added stronger replacements to keep
interoperability with other modern ssh clients and servers. The default
ordering of the algorithms is also adjusted.
Retired: The nowadays unsecure key-exchange diffie-hellman-group1-sha1 is
not enabled by default, but can be enabled with the option
preferred-algorithms.
Added: The new stronger key-exchange diffie-hellman-group16-sha512,
diffie-hellman-group18-sha512 and diffie-hellman-group14-sha256 are added
and enabled by default.
The questionable [RFC 6194] sha1-based algorithms
diffie-hellman-group-exchange-sha1 and diffie-hellman-group14-sha1 are
however still kept enabled by default for compatibility with ancient clients
and servers that lack modern key-exchange alternatives. When the
draft-ietf-curdle-ssh-kex-sha2 becomes an rfc, those sha1-based algorithms and
diffie-hellman-group1-sha1 will be deprecated by IETF. They might then be
removed from the default list in Erlang/OTP.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14110

	Modernized internal representation of sftp by use of maps.
Own Id: OTP-14117

	The Extension Negotiation Mechanism and the extension server-sig-algs in
draft-ietf-curdle-ssh-ext-info-05 are implemented.
The related draft-ietf-curdle-rsa-sha2-05 is implemented and introduces the
signature algorithms rsa-sha2-256 and rsa-sha2-512.
Own Id: OTP-14193

	The 'timeout' and 'connect_timeout' handling in ssh_sftp:start_channel
documentation is clarified.
Own Id: OTP-14216

	The functions ssh:connect, ssh:shell and ssh:start_channel now accept an
IP-tuple as Host destination argument.
Own Id: OTP-14243

	The function ssh:daemon_info/1 now returns Host and Profile as well as the
Port info in the property list.
Own Id: OTP-14259

	Removed the option public_key_alg which was deprecated in 18.2. Use
pref_public_key_algs instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14263

	The SSH application is refactored regarding daemon starting. The resolution of
contradicting Host argument and ip option were not described. There were
also strange corner cases when the 'any' value was used in Host argument
or ip option. This is (hopefully) resolved now, but it may cause
incompatibilities for code using both Host and the ip option. The value
'loopback' has been added for a correct way of naming those addresses.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14264

	The supervisor code is refactored. The naming of listening IP-Port-Profile
triples are slightly changed to improve consistency in strange corner cases as
resolved by OTP-14264
Own Id: OTP-14267 Aux Id: OTP-14266

	The idle_time option can now be used in daemons.
Own Id: OTP-14312

	Added test cases for IETF-CURDLE Extension Negotiation (ext-info)
Own Id: OTP-14361

	Testcases for IETF-CURDLE extension server-sig-algs including rsa-sha2-*
Own Id: OTP-14362 Aux Id: OTP-14361

	The option auth_methods can now also be used in clients to select which
authentication options that are used and in which order.
Own Id: OTP-14399

	Checks that a ECDSA public key (ecdsa-sha2-nistp*) stored in a file has the
correct size.
Own Id: OTP-14410

 Ssh 4.4.2.4

 Fixed Bugs and Malfunctions

	Fix rare spurious shutdowns of ssh servers when receiving {'EXIT',_,normal}
messages.
Own Id: OTP-15018

	Host key hash erroneously calculated for clients following draft-00 of RFC
4419, for example PuTTY
Own Id: OTP-15064

	Renegotiation could fail in some states
Own Id: OTP-15066

 Ssh 4.4.2.3

 Fixed Bugs and Malfunctions

	An ssh_sftp server (running version 6) could fail if it is told to remove a
file which in fact is a directory.
Own Id: OTP-15004

 Ssh 4.4.2.2

 Improvements and New Features

	Default exec is disabled when a user-defined shell is enabled.
Own Id: OTP-14881

 Ssh 4.4.2.1

 Fixed Bugs and Malfunctions

	Trailing white space was removed at end of the hello-string. This caused
interoperability problems with some other ssh-implementations (e.g OpenSSH
7.3p1 on Solaris 11)
Own Id: OTP-14763 Aux Id: ERIERL-74

 Ssh 4.4.2

 Fixed Bugs and Malfunctions

	ssh:daemon_info/1 crashed if the listening IP was not 'any'
Own Id: OTP-14298 Aux Id: seq13294

 Ssh 4.4.1

 Fixed Bugs and Malfunctions

	Fix bug when opening connections. If the tcp setup failed, that would in some
cases not result in an error return value.
Own Id: OTP-14108

	Reduce information leakage in case of decryption errors.
Own Id: OTP-14109

	The key exchange algorithm diffie-hellman-group-exchange-sha* has a
server-option {dh_gex_limits,{Min,Max}}. There was a hostkey signature
validation error on the client side if the option was used and the Min or
the Max differed from the corresponding values obtained from the client.
This bug is now corrected.
Own Id: OTP-14166

	The sftpd server now correctly uses root_dir and cwd when resolving file
paths if both are provided. The cwd handling is also corrected.
Thanks to kape1395!
Own Id: OTP-14225 Aux Id: PR-1331, PR-1335

	Ssh_cli used a function that does not handle non-utf8 unicode correctly.
Own Id: OTP-14230 Aux Id: ERL-364

 Improvements and New Features

	The implementation of the key exchange algorithms
diffie-hellman-group-exchange-sha* are optimized, up to a factor of 11 for
the slowest (= biggest and safest) group size.
Own Id: OTP-14169 Aux Id: seq-13261

	The ssh host key fingerprint generation now also takes a list of algorithms
and returns a list of corresponding fingerprints. See
public_key:ssh_hostkey_fingerprint/2 and the option silently_accept_hosts
in ssh:connect.
Own Id: OTP-14223

 Ssh 4.4

 Fixed Bugs and Malfunctions

	A file read with an sftp client could loose data if the packet_size is set to
larger than 64k. This is corrected now in such a way that the packet_size is
silently lowered if there is a risk for data loss.
Own Id: OTP-13857 Aux Id: ERL-238, OTP-13858

	When user defined SSH shell REPL process exits with reason normal, the SSH
channel callback module should report successful exit status to the SSH
client. This provides simple way for SSH clients to check for successful
completion of executed commands. (Thanks to isvilen)
Own Id: OTP-13905 Aux Id: PR-1173

 Improvements and New Features

	Extended the option silently_accept_hosts for ssh:connect to make it
possible for the client to check the SSH host key fingerprint string. Se the
reference manual for SSH.
Own Id: OTP-13887 Aux Id: OTP-13888

 Ssh 4.3.6

 Fixed Bugs and Malfunctions

	Re-negotiation problems with OpenSSH client solved.
Own Id: OTP-13972

 Ssh 4.3.5

 Fixed Bugs and Malfunctions

	If a client illegaly sends an info-line and then immediately closes the
TCP-connection, a badmatch exception was raised.
Own Id: OTP-13966

 Ssh 4.3.4

 Fixed Bugs and Malfunctions

	Intermittent ssh ERROR REPORT mentioning nonblocking_sender
Own Id: OTP-13953 Aux Id: seq13199

 Ssh 4.3.3

 Fixed Bugs and Malfunctions

	Handle all possible exit values that should be interpreted as {error,
closed}. Failing to do so could lead to unexpected crashes for users of the
ssh application.
Own Id: OTP-13932 Aux Id: seq13189

 Ssh 4.3.2

 Fixed Bugs and Malfunctions

	Upgrade of an established client connection could crash because the ssh client
supervisors children had wrong type. This is fixed now.
Own Id: OTP-13782 Aux Id: seq13158

	Partly checks the public key early in public key authorization
Own Id: OTP-13847 Aux Id: defensics-ssh3.1.0-190243,205277,219318

	Corrected handling of SHA for ECDSA (Elliptic curve public keys)
Own Id: OTP-13850 Aux Id: defensics-ssh3.1.0-214168

	Problems found by test suites as well as by Codenomicon/Defensics fixed: -
reduce max random padding to 15 bytes (Codenomicon/Defensics) - inclomplete
pdu handling (Codenomicon/Defensics) - badmatch in test suite - non-blocking
send fixes deadlock in ssh_connection_SUITE:interrupted_send
Own Id: OTP-13854

	Caller is now notified when a tcp close is received.
Own Id: OTP-13859 Aux Id: seq13177

 Improvements and New Features

	Use application:ensure_all_started/2 instead of hard-coding deps
Own Id: OTP-13843 Aux Id: PR-1147

 Ssh 4.3.1

 Fixed Bugs and Malfunctions

	SSH client does not any longer retry a bad password given as option to
ssh:connect et al.
Own Id: OTP-13674 Aux Id: TR-HU92273

	Removed possible hanging risk for a certain timing sequence when communicating
client and server executes on the same node.
Own Id: OTP-13715

 Ssh 4.3

 Improvements and New Features

	A socket created and connected by gen_tcp could now be used as input to
ssh:connect, ssh:shell, ssh_sftp:start_channel and ssh:daemon.
Own Id: OTP-12860

	Some time optimization mainly in message encoding.
Own Id: OTP-13131

	Optimized the sftp client time by setting new packet and window sizes.
Own Id: OTP-13175

	The ssh_connection_handler module in SSH is changed and now uses the new
behaviour gen_statem.
The module can be used as an example of a gen_statem callback module but
with a warning: This commit of ssh is just a straightforward port from gen_fsm
to gen_statem with some code cleaning. Since the state machine and the state
callbacks are almost unchanged the ssh module does not demonstrate the full
potential of the new behaviour.
The "new" state machine uses compound states. The ssh server and client state
machines are quite similar but differences exist. With gen_fsm there were
flags in the user data which in fact implemented "substates". Now with
gen_statem those are made explicit in the state names, eg. the state
userauth and the binary role-flag becomes the two state names
{userauth, server} and {userauth, client}.
Own Id: OTP-13267

	The {error, Reason} tuples returned from ssh_sftp api functions are
described.
Own Id: OTP-13347 Aux Id: ERL-86

	Added -spec in ssh
Own Id: OTP-13479

	It is now possible to call ssh:daemon/{1,2,3} with Port=0. This makes the
daemon select a free listening tcp port before opening it. To find this port
number after the call, use the new function ssh:daemon_info/1. See the
reference manual for details.
Own Id: OTP-13527

 Ssh 4.2.2.6

 Fixed Bugs and Malfunctions

	Fix rare spurious shutdowns of ssh servers when receiving {'EXIT',_,normal}
messages.
Own Id: OTP-15018

 Ssh 4.2.2.5

 Improvements and New Features

	Default exec is disabled when a user-defined shell is enabled.
Own Id: OTP-14881

 Ssh 4.2.2.4

 Fixed Bugs and Malfunctions

	Trailing white space was removed at end of the hello-string. This caused
interoperability problems with some other ssh-implementations (e.g OpenSSH
7.3p1 on Solaris 11)
Own Id: OTP-14763 Aux Id: ERIERL-74

 Ssh 4.2.2.3

 Fixed Bugs and Malfunctions

	The key exchange algorithm diffie-hellman-group-exchange-sha* has a
server-option {dh_gex_limits,{Min,Max}}. There was a hostkey signature
validation error on the client side if the option was used and the Min or
the Max differed from the corresponding values obtained from the client.
This bug is now corrected.
Own Id: OTP-14166

 Improvements and New Features

	Key exchange algorithms diffie-hellman-group-exchange-sha* optimized, up to a
factor of 11 for the slowest (= biggest and safest) one.
Own Id: OTP-14169 Aux Id: seq-13261

 Ssh 4.2.2.2

 Fixed Bugs and Malfunctions

	Upgrade of an established client connection could crash because the ssh client
supervisors children had wrong type. This is fixed now.
Own Id: OTP-13782 Aux Id: seq13158

 Ssh 4.2.2.1

 Fixed Bugs and Malfunctions

	SSH client does not any longer retry a bad password given as option to
ssh:connect et al.
Own Id: OTP-13674 Aux Id: TR-HU92273

 Ssh 4.2.2

 Fixed Bugs and Malfunctions

	Documentation correction of ssh_sftp:position/4
Thanks to Rabbe Fogelholm.
Own Id: OTP-13305 Aux Id: ERL-87

 Ssh 4.2.1

 Fixed Bugs and Malfunctions

	The authentication method 'keyboard-interactive' failed in the Erlang client
when the server after successful authentication continued by asking for zero
more passwords.
Own Id: OTP-13225

 Ssh 4.2

 Fixed Bugs and Malfunctions

	Better error handling in ssh_file. There was some rare errors when a
NFS-mounted file was opened by ssh_file and then remotely deleted during
reading. That caused an endless loop.
That bug is now fixed.
Own Id: OTP-12699 Aux Id: OTP-11688

	Fixed a bug in the compression algorithm zlib@openssh.com.
Own Id: OTP-12759

	It is now possible to start more than one daemon with a file descriptor given
in option fd. Each daemon must of course have a unique file descriptor.
Own Id: OTP-12966 Aux Id: seq12945

	Fixed a bug that caused the option dh_gex_limit to be ignored.
Own Id: OTP-13029

	A problem is fixed with the ssh:connect option pref_public_key_algs
specifying user keys.
Own Id: OTP-13158

 Improvements and New Features

	Document updates in the ssh reference manual: app doc file and ssh_connection.
Own Id: OTP-12003

	The authorization phase is made stateful to prevent ssh acting on messages
sent in wrong order.
Own Id: OTP-12787

	Testcases for bad message lengths and for bad subfield lengths added.
Own Id: OTP-12792 Aux Id: Codenomicon #5214, 6166

	The 'ecdsa-sha2-nistp256', 'ecdsa-sha2-nistp384' and 'ecdsa-sha2-nistp521'
signature algorithms for ssh are implemented. See RFC 5656.
Own Id: OTP-12936

	The crypto algorithms 'aes192-ctr' and 'aes256-ctr' are implemented. See
RFC 4344.
Own Id: OTP-12939

	The ciphers and macs AEAD_AES_128_GCM and AEAD_AES_256_GCM are implemented but
not enabled per default. See the SSH App Reference Manual and RFC5647 for
details.
The ciphers aes128-gcm@openssh.com and aes256-gcm@openssh.com are also
implemented and available in the default configuration.
Own Id: OTP-13018

	The ssh:daemon option dh_gex_groups is extended to read a user provided ssh
moduli file with generator-modulus pairs. The file is in openssh format.
Own Id: OTP-13052 Aux Id: OTP-13054

	There is now a file (public_key/priv/moduli) which lists
size-generator-modulus triples. The purpose is to give servers the possibility
to select the crypto primes randomly among a list of pregenerated triples.
This reduces the risk for some attacks on diffie-hellman negotiation.
See the reference manual for public_key:dh_gex_group/4 where the handling of
this is described.
The ssh server (ssh:daemon) uses this.
Own Id: OTP-13054 Aux Id: OTP-13052

	The ssh:daemon option pwdfun now also takes a fun/4. This enables the user
to 1) check userid-password in another way than the builtin algorithm, 2)
implement rate limiting per user or source IP or IP+Port, and 3) implement
blocking of missbehaving peers.
The old fun/2 still works as previously.
Own Id: OTP-13055 Aux Id: OTP-13053

	There is now a new option to make the server limit the size range of moduli
available for the diffie-hellman group exchange negotiation. See option
{dh_gex_limits,{Min,Max}} in ssh:daemon/3.
Own Id: OTP-13066

	Ecdh key exchange now validates compressed and uncompressed keys as defined in
rfc5656
Own Id: OTP-13067

	Search order for the .ssh directory are changed so $HOME is tried before
init:get_argument(home).
Own Id: OTP-13109

	The sftp receive window handling is optimized so it will not update the remote
end too often. This makes "sftp mget" considerable faster.
Own Id: OTP-13130

	The option key_cb is extended to take an optional list that is passed to the
callback module as an option. With this it is possible to have different keys
depending on which host that is connected. Another possibility is to write a
callback module that fetches keys etc from a database.
Thanks to Vipin Nair.
Own Id: OTP-13156

 Ssh 4.1.3

 Known Bugs and Problems

	SSH_MSG_KEX_DH_GEX_REQUEST_OLD implemented to make PuTTY work with erl server.
Own Id: OTP-13140

 Ssh 4.1.2

 Fixed Bugs and Malfunctions

	Add a 1024 group to the list of key group-exchange groups
Own Id: OTP-13046

 Ssh 4.1.1

 Improvements and New Features

	A new option max_channels limits the number of channels with active
server-side subsystems that are accepted.
Own Id: OTP-13036

 Ssh 4.1

 Fixed Bugs and Malfunctions

	Send an understandable disconnect message when the key exchange phase can't
find a common algorithm. There are also some test cases added.
Own Id: OTP-11531

	The third parameter in ssh_sftp:write_file is now accepting iolists again.
Unicode handling adjusted.
Own Id: OTP-12853 Aux Id: seq12891

 Improvements and New Features

	First part of ssh test suite re-organization and extension.
Own Id: OTP-12230

	The key exchange algorithms 'ecdh-sha2-nistp256', 'ecdh-sha2-nistp384' and
'ecdh-sha2-nistp521' are implemented. See RFC 5656.
This raises the security level considerably.
Own Id: OTP-12622 Aux Id: OTP-12671, OTP-12672

	The key exchange algorithm 'diffie-hellman-group14-sha1' is implemented. See
RFC 4253.
This raises the security level.
Own Id: OTP-12671 Aux Id: OTP-12672, OTP-12622

	The key exchange algorithms 'diffie-hellman-group-exchange-sha1' and
'diffie-hellman-group-exchange-sha256' are implemented. See RFC 4419.
This raises the security level.
Own Id: OTP-12672 Aux Id: OTP-12671, OTP-12622

	Adding random length extra padding as recommended in RFC 4253 section 6.
Own Id: OTP-12831

	New test library for low-level protocol testing. There is also a test suite
using it for some preliminary tests. The intention is to build on that for
more testing of individual ssh messages. See
lib/ssh/test/ssh_trpt_test_lib.erl and ssh_protocol_SUITE.erl in the same
directory.
Own Id: OTP-12858

	Increased default values for diffie-hellman-group-exchange-sha* to Min =
1024, N = 6144, Max = 8192.
Added 6144 and 8192 bit default gex groups.
Own Id: OTP-12937

	The mac algorithm 'hmac-sha2-512' is implemented. See RFC 6668.
Own Id: OTP-12938

 Ssh 4.0

 Fixed Bugs and Malfunctions

	Ssh crashed if a message was sent on a channel with packet_size = 0.
A new option for ssh:daemon is also introduced:
minimal_remote_max_packet_size. This option sets the least max packet size
declaration that the daemon will accept from a client. The default value is 0
to maintain compatibility with OpenSSH and the rfc:s.
Own Id: OTP-12645 Aux Id: seq12816

	Included test of the 'e' and 'f' parameters in diffie-hellman key exchange as
specified in rfc 4253 section 8.
Own Id: OTP-12649

	Fixes the bug that once the rekey_limit bytes (by default, 1GB) had been
transmitted the connection was rekeyed every minute, not after the next
transferred 'rekey_limit' chunk.
Thanks to Simon Cornish for the report and the fix!
Own Id: OTP-12692

	Fixes a bug that causes an SFTP connection to always fail when {timeout,
Timeout} option is used with ssh_sftp:start_channel.
Thanks to Simon Cornish
Own Id: OTP-12708

	Fix various ssh key exchange problems.
Thanks to Simon Cornish
Own Id: OTP-12760 Aux Id:
pull req 715

	The options system_dir and user_dir assumes that the value is a path to a
directory which is readable. This is now checked early, so ssh:daemon and
ssh:connect will fail with an error message immediately.
Own Id: OTP-12788

	A daemon now checks that a client doesn't try to authorize with methods not in
the option auth_methods.
Own Id: OTP-12790

	Disconnectfun now should trigger on all disconnects.
Own Id: OTP-12811

 Improvements and New Features

	Better usage of binary matching in ssh_auth.erl and ssh_message.erl
Own Id: OTP-11697

	A new option 'preferred_algorithms' is available for ssh:daemon and
ssh:connect.
This option defines the algorithms presented to the peer in the algorithm
negotiation phase of the ssh protocol.
The default list can be obtained from the new function
ssh:default_algorithms/0.
* INCOMPATIBILITY with removed undocumented options 'role' and
'compression' *
Own Id: OTP-12029

	The internal group to user_drv protocol has been changed to be synchronous in
order to guarantee that output sent to a process implementing the user_drv
protocol is printed before replying. This protocol is used by the
standard_output device and the ssh application when acting as a client.
This change changes the previous unlimited buffer when printing to standard_io
and other devices that end up in user_drv to 1KB.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12240

	If ssh_connection:subsystem/4 fails we do not want to crash but rather
terminate gracefully.
Own Id: OTP-12648 Aux Id: seq12834

	New option id_string for ssh:daemon and ssh:connect for limiting banner
grabbing attempts.
The possible values are: {id_string,string()} and {id_string,random}. The
latter will make ssh generate a random nonsense id-string for each new
connection.
Own Id: OTP-12659

	To enable the ssh daemon to run in a virtualized environment, where there can
be more that one server that has the same ip-address and port, we add a new
option profile.
Own Id: OTP-12675

	Upgrade test suite added.
Own Id: OTP-12676

	A new option for handling the SSH_MSG_DEBUG message's printouts. A fun could
be given in the options that will be called whenever the SSH_MSG_DEBUG message
arrives. This enables the user to format the printout or just discard it.
Own Id: OTP-12738 Aux Id: seq12860

	Testcase improvements and corrections:
* Add testcases for the disconnectfun option on both server and client
sides
* Timeout testcases adjusted for slow machines where they sometimes failed
Own Id: OTP-12786

	The option disconnectfun can now be used both on the client and server side.
Own Id: OTP-12789

	A new option unknown_msgfun/2 for ssh:connect and ssh:daemon for handling
unknown messages. With the option it is possible to intercept before an INFO
log message is generated.
One usage is to filter out messages that are not wanted in the error logger as
info reports. An example of such a message is the 'etimedout' tcp error
message that will be received if a connection has keep_alive and the peer is
restarted.
Own Id: OTP-12813 Aux Id: seq12881

 Ssh 3.2.4

 Fixed Bugs and Malfunctions

	Gracefully terminate if sockets is unexpectedly closed.
Own Id: OTP-12782

	Made Codenomicon Defensics test suite pass:
	limit number of algorithms in kexinit message
	check 'e' and 'f' parameters in kexdh
	implement 'keyboard-interactive' user authentication on server side
	return plain text message to bad version exchange message

Own Id: OTP-12784

 Ssh 3.2.3

 Fixed Bugs and Malfunctions

	A new option for handling the SSH_MSG_DEBUG message's printouts. A fun could
be given in the options that will be called whenever the SSH_MSG_DEBUG message
arrives. This enables the user to format the printout or just discard it.
Own Id: OTP-12738 Aux Id: seq12860

 Ssh 3.2.2

 Improvements and New Features

	New option id_string for ssh:daemon and ssh:connect for limiting banner
grabbing attempts.
The possible values are: {id_string,string()} and {id_string,random}. The
latter will make ssh generate a random nonsense id-string for each new
connection.
Own Id: OTP-12659

 Ssh 3.2.1

 Fixed Bugs and Malfunctions

	Ssh crashed if a message was sent on a channel with packet_size = 0.
A new option for ssh:daemon is also introduced:
minimal_remote_max_packet_size. This option sets the least max packet size
declaration that the daemon will accept from a client. The default value is 0
to maintain compatibility with OpenSSH and the rfc:s.
Own Id: OTP-12645 Aux Id: seq12816

 Ssh 3.2

 Fixed Bugs and Malfunctions

	If a channel is closed by the peer while using a function with call semantics
in ssh_connection.erl return {error, closed}. Document that the functions
can return {error, timeout | closed} and not only ssh_request_status()
Own Id: OTP-12004

	Bug that causes ssh:connect to return {error,int()} instead of
{error,timeout} when ssh handshake takes too long time.
Own Id: OTP-12369

	Documentation corrections. (Thanks to Rabbe Fogelholm)
Own Id: OTP-12399

 Improvements and New Features

	Example of ssh_connection:exec added.
Own Id: OTP-12558

 Ssh 3.1

 Fixed Bugs and Malfunctions

	Make sure the clean rule for ssh, ssl, eunit and otp_mibs actually removes
generated files.
Own Id: OTP-12200

	Improved Property Tests (Thanks to Thomas, John and Tobias at QuviQ)
Own Id: OTP-12256

	Correct typo of renegotiate that could cause rekeying to fail
Own Id: OTP-12277 Aux Id: seq12736

	The {timeout, Timeout} option passed to ssh_sftp:start_channel was not
applied to the early phases of the SSH protocol. This patch passes the Timeout
through to ssh:connect. In case the timeout occurs during these phases,
{error, timeout} is returned. (Thanks to Simon Cornish)
Own Id: OTP-12306

 Improvements and New Features

	Added API functions ptty_alloc/3 and ptty_alloc/4, to allocate a pseudo tty.
Own Id: OTP-11542 Aux Id: seq12493, OTP-11631

	Supports tar file creation on other media than file systems mounted on the
local machine.
The erl_tar api is extended with erl_tar:init/3 that enables usage of user
provided media storage routines. A ssh-specific set of such routines is hidden
in the new function ssh_sftp:open_tar/3 to simplify creating a tar archive
on a remote ssh server.
A chunked file reading option is added to erl_tar:add/3,4 to save memory on
e.g small embedded systems. The size of the slices read from a file in that
case can be specified.
Own Id: OTP-12180 Aux Id: seq12715

	Always send SSH_DISCONNECT protocol messages when peer sends corrupt messages.
Own Id: OTP-12185

	Hooks for funs that can change binaries sent to remote sites from erl_tar for
renote tar file creation are added. See ssh_sftp:open_tar/3,4 for details.
The hooks could also be used to read remote tar files that need transformation
before file extraction.
Those hooks are intended for encryption and decryption of tar files. Effort is
put into memory, disk and network resource economy.
Own Id: OTP-12312 Aux Id: OTP-12180

 Ssh 3.0.8

 Fixed Bugs and Malfunctions

	Fixes of login blocking after port scanning.
Own Id: OTP-12247 Aux Id: seq12726

 Ssh 3.0.7

 Fixed Bugs and Malfunctions

	Add option sftp_vsn to SFTP
Own Id: OTP-12227

 Improvements and New Features

	Fix option user_interaction to work as expected. When password authentication
is implemented with ssh keyboard-interactive method and the password is
already supplied, so that we do not need to query user, then connections
should succeed even though user_interaction option is set to false.
Own Id: OTP-11329 Aux Id: seq12420, seq12335

 Ssh 3.0.6

 Fixed Bugs and Malfunctions

	Gracefully handle bad data from the client when expecting ssh version
exchange.
Own Id: OTP-12157 Aux Id: seq12706

	When restarting an ssh daemon, that was stopped with ssh:stop_listner/ [1,2]
new options given shall replace old ones.
Own Id: OTP-12168 Aux Id: seq12711

 Improvements and New Features

	ssh now has a format_status function to avoid printing sensitive information
in error loggs.
Own Id: OTP-12030

 Known Bugs and Problems

	The option parallel_login didn't work with the value true. All logins were
serial.
Own Id: OTP-12194

 Ssh 3.0.5

 Fixed Bugs and Malfunctions

	When starting an ssh-daemon giving the option {parallel_login, true}, the
timeout for authentication negotiation ({negotiation_timeout, integer()})
was never removed.
This caused the session to always be terminated after the timeout if
parallel_login was set.
Own Id: OTP-12057 Aux Id: seq12663

 Improvements and New Features

	Warning: this is experimental and may disappear or change without previous
warning.
Experimental support for running Quickcheck and PropEr tests from common_test
suites is added to common_test. See the reference manual for the new module
ct_property_testing.
Experimental property tests are added under
lib/{inet,ssh}/test/property_test. They can be run directly or from the
commont_test suites inet/ftp_property_test_SUITE.erl and
ssh/test/ssh_property_test_SUITE.erl.
See the code in the test directories and the man page for details.
(Thanks to Tuncer Ayaz for a patch adding Triq)
Own Id: OTP-12119

 Ssh 3.0.4

 Fixed Bugs and Malfunctions

	When starting an ssh-daemon giving the option {parallel_login, true}, the
timeout for authentication negotiation ({negotiation_timeout, integer()})
was never removed.
This caused the session to always be terminated after the timeout if
parallel_login was set.
Own Id: OTP-12057 Aux Id: seq12663

 Ssh 3.0.3

 Fixed Bugs and Malfunctions

	Removed mail address from error reports and corrected spelling error
(Stacktace -> stacktrace)
Own Id: OTP-11883 Aux Id: seq12586

	Decode/encode fixes in SSH_MSG_IGNORE and SSH_MSG_UNIMPLEMENTED.
Own Id: OTP-11983

 Improvements and New Features

	Accepts that some older OpenSSH clients sends incorrect disconnect messages.
Own Id: OTP-11972

	Handle inet and inet6 option correctly
Own Id: OTP-11976

 Ssh 3.0.2

 Fixed Bugs and Malfunctions

	Fixed timeout bug in ssh:connect.
Own Id: OTP-11908

 Improvements and New Features

	Option max_sessions added to ssh:daemon/{2,3}. This option, if set, limits
the number of simultaneous connections accepted by the daemon.
Own Id: OTP-11885

 Ssh 3.0.1

 Fixed Bugs and Malfunctions

	Fixes the problem that ssh_cli in some cases could delay the prompt if a tty
was not requested by the client.
Own Id: OTP-10732

	The variable NewCol is now correctly calculated allowing for tab-completion of
function calls even when preceded with blank space (Thanks to Alexander
Demidenko)
Own Id: OTP-11566

	Fix incorrect dialyzer spec and types, also enhance documentation.
Thanks to Ayaz Tuncer.
Own Id: OTP-11627

	Fixed a bug when ssh:exec executes a linux command on a linux ssh daemon. If
the result is sent back from standard error, the length information was not
stripped off correctly.
Own Id: OTP-11667

	Fixed a bug with the ssh file 'known_hosts' which made the file grow with many
equal entries.
Own Id: OTP-11671

	Some local implementations of removing the last element from a list are
replaced by lists:droplast/1. Note that this requires at least stdlib-2.0,
which is the stdlib version delivered in OTP 17.0. (Thanks to Hans Svensson)
Own Id: OTP-11678

	Bug fix for ssh:daemon/2,3 so that the failfun is called when it should.
Own Id: OTP-11680

	Fixed bug which crashed ssh when SSH_MSG_KEX_DH_GEX_GROUP is received. This
could cause a vm-crash for eheap_alloc during garbage collect.
Own Id: OTP-11696 Aux Id: 12547, 12532

	Fixes a bug that breaks keyboard-interactive authentication. Thanks to Simon
Cornish for reporting and suggesting a fix.
Own Id: OTP-11698

	dialyzer specs are now correct for ssh:start/0, ssh:start/1, ssh:stop/0
and ssh_connection_handler:open_channel/5. (Thanks to Johannes Weißl)
Own Id: OTP-11705

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	Fixed dialyzer warning for ssh_connection:send.
Own Id: OTP-11821

	ssh:daemon/2,3 : Added options negotiation_timeout and parallel_login to
tune the authentication behaviour.
Own Id: OTP-11823

 Improvements and New Features

	Ssh now fully supports unicode filenames, filecontents, shell and cli. Please
note that the underlying os and emulator must also give support for unicode.
You may want to start the emulator with "erl +fnu" on Linux.
Own Id: OTP-10953

 Ssh 3.0

 Fixed Bugs and Malfunctions

	The ssh cli is now faster at close and before new prompt.
Own Id: OTP-11339 Aux Id: seq12423

	Ssh process structure was redesigned to better map to what is truly parallel
this has solved a lot of strange timing issues that sometimes would occur, for
instance a process leak could happen when a lot of connections where taken up
and down in parallel in a short period of time. Also backwards compatible
clauses to "original" but never supported features has been removed.
Impact: Increases flow efficiency
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11363

	Fix various typos in erts, kernel and ssh. Thanks to Martin Hässler.
Own Id: OTP-11414

	Correct private_key type documentation in ssh_server_key_api. Thanks to
Tristan Sloughter.
Own Id: OTP-11449

	The functions in ssh_no_io.erl did not mimic the functions in ssh_io.erl
correctly, the arity was incorrect for some functions which caused ssh to fail
in the wrong way.
Own Id: OTP-11490

 Improvements and New Features

	Add option to disallow CLI
Own Id: OTP-10976

	Add sockname and user to ssh:connection_info/2
Own Id: OTP-11296

 Ssh 2.1.8

 Improvements and New Features

	Do not chmod ~/.ssh unnecessarily.
Own Id: OTP-11189

	Make ssh_cli.erl handle CTRL+C. Thanks to Stefan Zegenhagen.
Own Id: OTP-11199

	Clarified timeout options in documentation.
Own Id: OTP-11249

	Add openssh_zlib compression type to ssh_transport. Thanks to Louis-Philippe
Gauthier.
Own Id: OTP-11256

 Ssh 2.1.7

 Fixed Bugs and Malfunctions

	ssh:daemon will get fed with an argument even if it is not a valid expression.
Own Id: OTP-10975

 Improvements and New Features

	Properly ignore everything in lib/ssh/doc/html/. Thanks to Anthony Ramine.
Own Id: OTP-10983

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

 Ssh 2.1.6

 Fixed Bugs and Malfunctions

	Fixed timing rekeying bug.
Own Id: OTP-10940

 Ssh 2.1.5

 Fixed Bugs and Malfunctions

	Bug in rekeying for daemon fixed.
Own Id: OTP-10911

 Improvements and New Features

	Enhanced error message and added test for ssh clients trying to start non
existing subsystems.
Own Id: OTP-10714

 Ssh 2.1.4

 Improvements and New Features

	Better quality on the error messages for when key exchange failed.
Own Id: OTP-10553 Aux Id: seq12152

	Fix link to documentation for ssh:connect/3,4. Thanks to Martin Hässler.
Own Id: OTP-10862

 Ssh 2.1.3

 Fixed Bugs and Malfunctions

	It is now possible to send an empty binary using ssh_connection:send/3, this
corner case previously caused ssh_connection:send to hang.
Own Id: OTP-9478 Aux Id: kunagi-226 [137]

	Fix typo in keyboard-interactive string. Thanks to Daniel Goertzen
Own Id: OTP-10456

	ssh_connectino:send/3 will not return until all data has been sent. Previously
it could return too early, resulting in things such premature close of the
connection. Also improved error handling of closed SSH channels.
Own Id: OTP-10467

	Fixed ssh_cli.erl crashes because #state.buf is yet 'undefined'.
Fixed Client terminateing connections due to channel_request message response
is sent to the wrong id.
Affected SSH clients: - all clients based on SSH-2.0-TrileadSSH2Java_213
(problem #1) - SSH Term Pro (problem #2)
Thanks to Stefan Zegenhagen
Own Id: OTP-10475

	Fixed various syntax errors in SSH appup file
Own Id: OTP-10657

 Improvements and New Features

	SSH_FX_FILE_IS_A_DIRECTORY message for sftp implemented
Own Id: OTP-6406 Aux Id: kunagi-218 [129]

	SSH Rekeying fixed
Own Id: OTP-7785 Aux Id: kunagi-220 [131]

	Added User Guide for the SSH application
Own Id: OTP-7786 Aux Id: kunagi-221 [132]

	Documentation regarding failfun, connectfun and disconnectfun provided
Own Id: OTP-7792 Aux Id: kunagi-222 [133]

	SSH connection timer implementation
New option, {idle_time, integer()}, sets a timeout on connection when no
channels are active, defaults to infinity
Own Id: OTP-10514 Aux Id: seq12020

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Fixed internal error on when client and server cannot agree o which authmethod
to use.
Own Id: OTP-10731 Aux Id: seq12237

 Ssh 2.1.2.1

 Improvements and New Features

	Removed error report in ssh_connection_handler triggered by badmatch failure.
Own Id: OTP-11188

 Ssh 2.1.2

 Fixed Bugs and Malfunctions

	SSH quiet mode
A new option to ssh:connect/3,4, quiet_mode. If true, the client will not
print out anything on authorization.
Own Id: OTP-10429 Aux Id: kunagi-273 [184]

	Restrict which key algorithms to use
A new option to ssh:connect/3,4 is introduced, public_key_algs, where you can
restrict which key algorithms to use and in which order to try them.
Own Id: OTP-10498 Aux Id: kunagi-289 [200]

	Confidentiality of client password
Unsets clients password after authentication.
Own Id: OTP-10511 Aux Id: kunagi-292 [203]

	Fixed user interaction for SSH
It's now available to accept hosts and input password
Own Id: OTP-10513 Aux Id: kunagi-293 [204]

 Ssh 2.1.1

 Fixed Bugs and Malfunctions

	Ssh now only sends one channel close message under all circumstances, before
it would sometimes incorrectly send two.
Own Id: OTP-10060

	The options check mistreated the ip_v6_disable-option, and did not handle
some, at the moment, undocumented options correctly.
Own Id: OTP-10061

	The channel id in a channel failure message, sent to the peer, is now in all
cases the remote channel id
Own Id: OTP-10062

	Improved handling of multiple closes to avoid occasional crashes when a
channel is closed more than once.
Own Id: OTP-10112

	Fix lib/src/test/ssh_basic_SUITE.erl to fix IPv6 option typos
Fixed incorrect option "ipv6_disable" to "ipv6_disabled" as documented in the
ssh manual.
Own Id: OTP-10219

	SSH: Make "auth_methods" server option re-usable
The 'auth_methods' option is used by the server side of the SSH code to tell a
connecting SSH client about the authentication methods that are supported by
the server. The code still extracts and handles the 'auth_methods' option from
Opts in appropriate places, but the Opts checking code in ssh.erl didn't allow
that option to be specified.
Own Id: OTP-10224

	Use the correct channel id when adjusting the channel window
Own Id: OTP-10232

 Ssh 2.1

 Fixed Bugs and Malfunctions

	All keys in authorized_keys are considered, wrongly only the first one was
before.
Own Id: OTP-7235

	ssh daemon now properly handles ras host keys, in previous versions only dsa
host keys sufficed to set up a connection.
Own Id: OTP-7677

	ssh:shell/3 and ssh:connect/3 does not hang anymore if connection negotiation
fails
Own Id: OTP-8111

	Improve check so that we will not try to read ssh packet length indicator if
not sure we have enough data.
Own Id: OTP-8380

	Do not try to use user interaction when it is disabled.
Own Id: OTP-9466 Aux Id: seq11886

	Improved error handling of internal errors i the ssh connection handling
process
Own Id: OTP-9905

	sftp daemon generates file handles correct
Own Id: OTP-9948

 Improvements and New Features

	Document supported algorithms
Own Id: OTP-8109

	Graceful handling of premature close from an sftp client.
Own Id: OTP-9391 Aux Id: seq11838

	Changed ssh implementation to use the public_key application for all public
key handling. This is also a first step for enabling a callback API for
supplying public keys and handling keys protected with password phrases.
Additionally the test suites where improved so that they do not copy the users
keys to test server directories as this is a security liability. Also ipv6 and
file access issues found in the process has been fixed.
This change also solves OTP-7677 and OTP-7235
This changes also involves some updates to public_keys ssh-functions.
Own Id: OTP-9911

	Added options for the ssh client to support user keys files that are password
protected.
Own Id: OTP-10036 Aux Id: OTP-6400, Seq10595

 Ssh 2.0.9

 Improvements and New Features

	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

	Ssh behaviours now use the new directive "-callback". Parameters will be
further specified in a later version of ssh.
Own Id: OTP-9796

 Ssh 2.0.8

 Fixed Bugs and Malfunctions

	Calling ssh_sftp:stop_channel/1 resulted in that the trap_exit flag was set to
true for the invoking process.
Own Id: OTP-9386 Aux Id: seq11865

 Ssh 2.0.7

 Fixed Bugs and Malfunctions

	An unexpected message would crash the ssh_connection_handler and close the
connection. Now an error message is generated instead.
Own Id: OTP-9273

 Ssh 2.0.6

 Fixed Bugs and Malfunctions

	A memory leak has been fixed. I.e. per terminated connection the size of a pid
and the length of a user name string was not cleared.
Own Id: OTP-9232

 Ssh 2.0.5

 Improvements and New Features

	Strengthened random number generation. (Thanks to Geoff Cant)
Own Id: OTP-9225

 Ssh 2.0.4

 Fixed Bugs and Malfunctions

	In some cases SSH returned {error, normal} when a channel was terminated
unexpectedly. This has now been changed to {error, channel_closed}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8987 Aux Id: seq11748

	SSH did not handle the error reason enetunreach when trying to open a IPv6
connection.
Own Id: OTP-9031

 Improvements and New Features

	It is now possible to use SSH to sign and verify binary data.
Own Id: OTP-8986

	SSH now ensures that the .ssh directory exists before trying to access files
located in that directory.
Own Id: OTP-9010

 Ssh 2.0.3

 Fixed Bugs and Malfunctions

	The fix regarding OTP-8849 was not included in the previous version as stated.
Own Id: OTP-8918

 Ssh 2.0.2

 Fixed Bugs and Malfunctions

	The ssh_system_sup did not catch noproc and shutdown messages.
Own Id: OTP-8863

	In some cases a crash report was generated when a connection was closing down.
This was caused by a race condition between two processes.
Own Id: OTP-8881 Aux Id: seq11656, seq11648

 Improvements and New Features

	SSH no longer use deprecated public_key functions.
Own Id: OTP-8849

 Ssh 2.0.1

 Fixed Bugs and Malfunctions

	SSH in some cases terminated channels with reason normal when it should have
been shutdown.
Own Id: OTP-8714

	SSH in some cases generated a crash report when a channel was closed in a
normal way.
Own Id: OTP-8735 Aux Id: seq11615

	The processes ssh_subsystem_sup and one ssh_channel_sup was not terminated
when a connection was closed.
Own Id: OTP-8807

 Ssh 2.0

 Fixed Bugs and Malfunctions

	The function ssh:connect/4 was not exported.
Own Id: OTP-8550 Aux Id:

	Aligned error message with used version (SSH_FX_FAILURE vs
SSH_FX_NOT_A_DIRECTORY, the latter introduced in version 6).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8644 Aux Id: seq11574

	Resolved race condition when another connection is started before a channel is
opened in the first connection.
Own Id: OTP-8645 Aux Id: seq11577

 Improvements and New Features

	The configuration parameter ip_v6_disabled is now available, which makes it
possible for the user to alter the IP version SSH shall use.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8535 Aux Id:

	The ssh_connection:send operation now accepts infinity as timeout.
Own Id: OTP-8534 Aux Id:

	The connection handler now include stack traces when a channel message is not
handled correctly.
Own Id: OTP-8524 Aux Id:

	Removed deprecated modules (ssh_ssh, ssh_sshd and ssh_cm) and functions
(ssh_sftp:connect and ssh_sftp:stop).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8596 Aux Id:

 Ssh 1.1.8

 Fixed Bugs and Malfunctions

	In some cases SSH ceased to collect more data from the transport layer.
Own Id: OTP-8401 Aux Id: seq11479

 Improvements and New Features

	Old release notes removed.
Own Id: OTP-8356 Aux Id:

 Ssh 1.1.7

 Fixed Bugs and Malfunctions

	Now clear all processes when a connection is terminated.
Own Id: OTP-8121 Aux Id:

	In some rare cases the connection handler could enter an infinite loop.
Own Id: OTP-8277 Aux Id: seq11428

	If an SFTP server did not respond with EOF, the function ssh_sftp:list_dir/2/3
would enter an infinite loop.
Own Id: OTP-8278 Aux Id: seq11450

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201 Aux Id:

 Ssh 1.1.6

 Fixed Bugs and Malfunctions

	ssh_sftp:start_channel did not handle all possible return values from
ssh_channel:start correctly.
Own Id: OTP-8176 Aux Id:

	SFTPD did not handle rename command (version 4) correctly.
Own Id: OTP-8175 Aux Id: seq11373

	If a connection manager already had been terminated it could cause a channel
to generate a crash report when it was about to stop.
Own Id: OTP-8174 Aux Id: seq11377

	Requests could result in badarg or badmatch EXIT messages in the connection
manager if the channel no longer existed.
Own Id: OTP-8173 Aux Id: seq11379

	ssh_transport:unpack/3 could cause a badarg error.
Own Id: OTP-8162 Aux Id:

 Improvements and New Features

	The encryption algorithm aes128-cbc is now supported. Requires that
crypto-1.6.1 is available.
Own Id: OTP-8110 Aux Id:

 Ssh 1.1.5

 Fixed Bugs and Malfunctions

	ssh_sftp:start_channel/3 did not handle timeout correctly.
Own Id: OTP-8159 Aux Id: seq11386

	If a progress message was not received after invoking ssh:connect/3 the call
could hang for ever. A timeout option has also been added.
Own Id: OTP-8160 Aux Id: seq11386

	A comma has been missing in the ssh.appup file since SSH-1.0.2.
Own Id: OTP-8161 Aux Id:

 Ssh 1.1.4

 Fixed Bugs and Malfunctions

	SSH sometimes caused a crash report at disconnect.
Own Id: OTP-8071 Aux Id: seq11319

 Ssh 1.1.3

 Fixed Bugs and Malfunctions

	The operation ssh_sftp:stop_channel/1 returned an exception if the connection
already had been closed.
Own Id: OTP-7996 Aux Id: seq11281

	SSH did not handle if supervisor:start_child/2 returned {error,
already_present}.
Own Id: OTP-8034 Aux Id: seq11307

	SSH no longer cause supervisor reports when a connection is terminated in a
controlled manner.
Own Id: OTP-8035 Aux Id: seq11308

 Ssh 1.1.2

 Fixed Bugs and Malfunctions

	Ssh confused local and remote channel id's, which in some cases resulted in
that messages were discarded.
Own Id: OTP-7914 Aux Id: seq11234

	Ssh could not handle echo values other than 0 and 1.
Own Id: OTP-7917 Aux Id: seq11238

	A crash occurred if a non-valid channel reference was received.
Own Id: OTP-7918 Aux Id: seq11238

	Sftpd connections was not closed after receiving eof from a client.
Own Id: OTP-7921 Aux Id: seq11222

	It was not possible to start a SFTP subsystem on certain platforms, i.e. those
who do not support symbolic links.
Own Id: OTP-7930 Aux Id:

	In some cases the message {ssh_cm, ssh_connection_ref(), {closed,
ssh_channel_id()}} was not passed to the registered callback module.
Own Id: OTP-7957 Aux Id:

 Improvements and New Features

	By using the sftpd option {max_files, Integer}, the message size for READDIR
commands can be reduced.
Own Id: OTP-7919 Aux Id: seq11230

 Ssh 1.1.1

 Fixed Bugs and Malfunctions

	The erlang ssh server has presented itself incorrectly, using the special
version ssh-1.99, although it never has supported versions below 2.0. Since
ssh-1.1 client versions below 2.0 are correctly rejected instead of letting
the server crash later on. Alas the problem with the presentation string was
not discovered until after ssh.1.1 was released. Now the server will present
itself as ssh-2.0.
Own Id: OTP-7795

	An internal function call used an incorrect parameter, which caused problem
when the old listen API was used. This was introduced in Ssh-1.1.
Own Id: OTP-7920 Aux Id: seq11211

 Improvements and New Features

	Ssh timeouts will now behave as expected i.e. defaults to infinity only the
user of the ssh application can know of a reasonable timeout value for their
application.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7807

	The implementation of timeouts added as a patch in ssh-1.0.1 was slightly
changed and is now documented.
Own Id: OTP-7808

	To honor the multiplexing of channels over one ssh connection concept
ssh_sftp:connect/ [1,2,3] is deprecated and replaced by
ssh_sftp:start_channel/[1,2,3] and ssh_sftp:stop/1 is deprecated and replaced
by ssh_sftp:stop_channel/1 and to stop the ssh connection ssh:close/ 1 should
be called.
Own Id: OTP-7809

	Added the message {ssh_channel_up, ChannelId, ConnectionManager} that shall
be handled by the channel callback handle_msg/2. This makes the function
handle_msg/2 a mandatory function for ssh channels implementations which it
was not in ssh-1.1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7828

 Ssh 1.1

 Fixed Bugs and Malfunctions

	A flaw in the implementation of the supervision tree caused the ssh daemon to
close the connections to all currently logged in users if one user logged out.
Another problem related to the supervision tree caused the closing down of
clients to leak processes i.e. all processes was not shutdown correctly.
Own Id: OTP-7676

	Tabs could cause ssh_cli to print things in a surprising way.
Own Id: OTP-7683 Aux Id: seq11102

	[sftp, sftpd] - Added patch to make sftp timestamps more correct, in the long
run it would be nice to have better support in file to be able to make it
always behave correctly now it will be correct 99 % of time instead of almost
never correct, at least on unix-based platforms.
Own Id: OTP-7685 Aux Id: seq11082

	[sftpd] - Added patch to further improve handling of symbolic links in the
sftp-server.
Own Id: OTP-7766 Aux Id: seq11101

	Ssh incorrectly sent the local id instead of the remote id of a channel to the
peer. For simpler cases these ids often happen to have the same value. One
case when they do not is when the client sends an exec command two times in a
raw on the same ssh connection (different channels of course as the channel
will be closed when the exec command has been evaluated) .
Own Id: OTP-7767

	Packet data could be lost under high load due to the fact that buffered data
was sometimes wrongly discarded before it had been sent.
Own Id: OTP-7768

	Improved ipv6-handling as some assumptions about inet functions where
incorrect.
Own Id: OTP-7770

 Improvements and New Features

	Added new API function ssh:connection_info/2.
Own Id: OTP-7456

	Now starts ssh channel processes later avoiding synchronization problems
between processes.
Own Id: OTP-7516

	Ssh now rejects old versions of the ssh protocol for security reasons. (Even
if they where not correctly rejected before the connection would probably have
failed anyway due to other reasons.)
Own Id: OTP-7645 Aux Id: seq11094

	New API module ssh_channel has been added. This is a behaviour to facilitate
the implementation of ssh clients and plug in subsystems to the ssh daemon.
Note that this slightly changes the options to the API function
ssh:daemon/[1,2,3] deprecating all no longer documented options. Note that
the new API enforces the "logical way" of using the old API i.e. making the
subsystem process part of the ssh applications supervisor tree, so missuses of
the old API are not compatible with the new API.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7769

 Known Bugs and Problems

	Public keys protected by a password are currently not handled by the erlang
ssh application.
Own Id: OTP-6400 Aux Id: 10595

 Ssh 1.0.2

 Fixed Bugs and Malfunctions

	[sftpd] - Listing of symbolic link directories should now work as expected.
Own Id: OTP-7141 Aux Id: seq10856

 Ssh 1.0.1

 Fixed Bugs and Malfunctions

	[sftp] - When listing a directory with more than 100 files only the first 100
where listed. This has now been fixed.
Own Id: OTP-7318 Aux Id: seq10953

	When restarting an ssh-system the expected return value from
ssh_system_sup:restart_acceptor/2 was incorrect, this is no longer the case.
Own Id: OTP-7564 Aux Id: seq11055

	A few minor bugs where fixed in ssh_userreg.erl and ssh_connection_manager and
a a ssh_cli option was added to restore backwards compatibility with the old
ssh_cm - API.
Own Id: OTP-7565

	Fixed bug in ipv6 support and added option to disable ipv6 as a workaround for
badly configured computers.
Own Id: OTP-7566

 Improvements and New Features

	[sftp] - Option added to set timeout value in sftp.
Own Id: OTP-7305 Aux Id: seq10945

 Ssh 1.0

 Fixed Bugs and Malfunctions

	Removed some special handling of prompts that made ssh behave differently than
openssh.
Own Id: OTP-7485 Aux Id: seq11025

	Bug in encoding of pty opts has been fixed.
Own Id: OTP-7504

 Improvements and New Features

	The architecture of the ssh processes has been reconstructed to fit in a
supervision tree as to become a real OTP application and benefit from this
when starting and stopping.
Own Id: OTP-7356 Aux Id: seq10899

	Support for pty option echo off added. Requires kernel from R12B-4.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7502 Aux Id: seq10959

	The ssh API has been enhanced a lot of old API functions has become
deprecated.
Own Id: OTP-7503

SSH Protocol Introduction

SSH is a protocol for secure remote logon and other secure network services over
an insecure network.

 Scope and Purpose

SSH provides a single, full-duplex, and byte-oriented connection between client
and server. The protocol also provides privacy, integrity, server
authentication, and man-in-the-middle protection.
The ssh application is an implementation of the SSH Transport, Connection and
Authentication Layer Protocols in Erlang. It provides the following:
	API functions to write customized SSH clients and servers applications
	The Erlang shell available over SSH
	An SFTP client (ssh_sftp) and server (ssh_sftpd)

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language,
concepts of OTP, and has a basic understanding of public keys.

 Protocol Overview

Conceptually, the SSH protocol can be partitioned into four layers:

title: SSH Protocol Architecture

block-beta
 columns 2

 l1["SSH Client/Server Applications"]:2
 l2a["Connection Protocol"] l2b["Authentication Protocol"]
 l3["Transport Protocol"]:2
 l4["TCP/IP Stack"]:2

 Transport Protocol

The SSH Transport Protocol is a secure, low-level transport. It provides strong
encryption, cryptographic host authentication, and integrity protection. A
minimum of Message Authentication Code (MAC) and encryption algorithms are
supported. For details, see the ssh manual page in ssh.

 Authentication Protocol

The SSH Authentication Protocol is a general-purpose user authentication
protocol run over the SSH Transport Layer Protocol. The ssh application
supports user authentication as follows:
	Using public key technology. RSA and DSA, X509-certificates are not supported.
	Using keyboard-interactive authentication. This is suitable for interactive
authentication methods that do not need any special software support on the
client side. Instead, all authentication data is entered from the keyboard.
	Using a pure password-based authentication scheme. Here, the plain text
password is encrypted before sent over the network.

Several configuration options for authentication handling are available in
ssh:connect/3,4 and ssh:daemon/2,3.
The public key handling can be customized by implementing the following
behaviours from ssh:
	Module ssh_client_key_api.
	Module ssh_server_key_api.

 Connection Protocol

The SSH Connection Protocol provides application-support services over the
transport pipe, for example, channel multiplexing, flow control, remote program
execution, signal propagation, and connection forwarding. Functions for handling
the SSH Connection Protocol can be found in the module ssh_connection in
ssh.

 Channels

All terminal sessions, forwarded connections, and so on, are channels. Multiple
channels are multiplexed into a single connection. All channels are
flow-controlled. This means that no data is sent to a channel peer until a
message is received to indicate that window space is available. The initial
window size specifies how many bytes of channel data that can be sent to the
channel peer without adjusting the window. Typically, an SSH client opens a
channel, sends data (commands), receives data (control information), and then
closes the channel. The ssh_client_channel behaviour handles generic parts
of SSH channel management. This makes it easy to write your own SSH
client/server processes that use flow-control and thus opens for more focus on
the application logic.
Channels come in the following three flavors:
	Subsystem - Named services that can be run as part of an SSH server, such
as SFTP (ssh_sftpd), that is built into the SSH daemon
(server) by default, but it can be disabled. The Erlang ssh daemon can be
configured to run any Erlang- implemented SSH subsystem.
	Shell - Interactive shell. By default the Erlang daemon runs the Erlang
shell. The shell can be customized by providing your own read-eval-print loop.
You can also provide your own Command-Line Interface (CLI) implementation, but
that is much more work.
	Exec - One-time remote execution of commands. See function
ssh_connection:exec/4 for more information.

 Where to Find More Information

For detailed information about the SSH protocol, refer to the following Request
for Comments(RFCs):
	RFC 4250 - Protocol Assigned Numbers
	RFC 4251 - Protocol Architecture
	RFC 4252 - Authentication Protocol
	RFC 4253 - Transport Layer Protocol
	RFC 4254 - Connection Protocol
	RFC 4344 - Transport Layer Encryption
Modes
	RFC 4716 - Public Key File Format

Examples

The following examples use the utility function ssh:start/0 to start all
needed applications (crypto, public_key, and ssh). All examples are run in
an Erlang shell, or in a bash shell, using OpenSSH to illustrate how the ssh
application can be used. The examples are run as the user otptest on a local
network where the user is authorized to log in over ssh to the host ssh.example.com.
If nothing else is stated, it is presumed that the otptest user has an entry
in the authorized_keys file of ssh.example.com (allowed to log in over ssh without
entering a password). Also, ssh.example.com is a known host in the known_hosts file
of the user otptest. This means that host-verification can be done without
user-interaction.

 Using the Erlang ssh Terminal Client

The user otptest, which has bash as default shell, uses the ssh:shell/1
client to connect to the OpenSSH daemon running on a host called ssh.example.com:
1> ssh:start().
ok
2> {ok, S} = ssh:shell("ssh.example.com").
otptest@ssh.example.com:> pwd
/home/otptest
otptest@ssh.example.com:> exit
logout
3>

 Running an Erlang ssh Daemon

The system_dir option must be a
directory containing a host key file and it defaults to /etc/ssh. For details,
see Section Configuration in ssh.
Note
Normally, the /etc/ssh directory is only readable by root.

The option user_dir defaults to
directory ~/.ssh.
Step 1. To run the example without root privileges, generate new keys and host
keys:
$bash> ssh-keygen -t rsa -f /tmp/ssh_daemon/ssh_host_rsa_key
[...]
$bash> ssh-keygen -t rsa -f /tmp/otptest_user/.ssh/id_rsa
[...]
Step 2. Create the file /tmp/otptest_user/.ssh/authorized_keys and add the
content of /tmp/otptest_user/.ssh/id_rsa.pub.

Step 3. Start the Erlang ssh daemon:
1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}]).
{ok,<0.54.0>}
3>
Step 4. Use the OpenSSH client from a shell to connect to the Erlang ssh
daemon:
$bash> ssh ssh.example.com -p 8989 -i /tmp/otptest_user/.ssh/id_rsa \
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts
The authenticity of host 'ssh.example.com' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'ssh.example.com' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ^G)
1>
There are two ways of shutting down an ssh daemon, see Step 5a and Step
5b.
Step 5a. Shut down the Erlang ssh daemon so that it stops the listener but
leaves existing connections, started by the listener, operational:
3> ssh:stop_listener(Sshd).
ok
4>
Step 5b. Shut down the Erlang ssh daemon so that it stops the listener and
all connections started by the listener:
3> ssh:stop_daemon(Sshd).
ok
4>

 One-Time Execution

 Erlang client contacting OS standard ssh server

In the following example, the Erlang shell is the client process that receives
the channel replies as Erlang messages.
Do an one-time execution of a remote OS command ("pwd") over ssh to the ssh
server of the OS at the host "ssh.example.com":
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("ssh.example.com", 22, []).
{ok,<0.57.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "pwd", infinity).
5> flush(). % Get all pending messages. NOTE: ordering may vary!
Shell got {ssh_cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}
Shell got {ssh_cm,<0.57.0>,{eof,0}}
Shell got {ssh_cm,<0.57.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.57.0>,{closed,0}}
ok
6> ssh:connection_info(ConnectionRef, channels).
{channels,[]}
7>
See ssh_connection and ssh_connection:exec/4 for finding documentation of
the channel messages.
To collect the channel messages in a program, use receive...end instead of
flush/1:
5> receive
5> {ssh_cm, ConnectionRef, {data, ChannelId, Type, Result}} when Type == 0 ->
5> {ok,Result}
5> {ssh_cm, ConnectionRef, {data, ChannelId, Type, Result}} when Type == 1 ->
5> {error,Result}
5> end.
{ok,<<"/home/otptest\n">>}
6>
Note that only the exec channel is closed after the one-time execution. The
connection is still up and can handle previously opened channels. It is also
possible to open a new channel:
% try to open a new channel to check if the ConnectionRef is still open
7> {ok, NewChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,1}
8>
To close the connection, call the function
ssh:close(ConnectionRef). As an alternative, set the option
{idle_time, 1} when opening the
connection. This will cause the connection to be closed automatically when there
are no channels open for the specified time period, in this case 1 ms.

 OS standard client and Erlang daemon (server)

An Erlang SSH daemon could be called for one-time execution of a "command". The
"command" must be as if entered into the erlang shell, that is a sequence of
Erlang expressions ended by a period (.). Variables
bound in that sequence will keep their bindings throughout the expression
sequence. The bindings are disposed when the result is returned.
Here is an example of a suitable expression sequence:
A=1, B=2, 3 == (A + B).
It evaluates to true if submitted to the Erlang daemon started in
Step 3 above:
$bash> ssh ssh.example.com -p 8989 "A=1, B=2, 3 == (A + B)."
true
$bash>
The same example but now using the Erlang ssh client to contact the Erlang
server:
1> {ok, ConnectionRef} = ssh:connect("ssh.example.com", 8989, []).
{ok,<0.216.0>}
2> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
3> success = ssh_connection:exec(ConnectionRef, ChannelId,
 "A=1, B=2, 3 == (A + B).",
 infinity).
success
4> flush().
Shell got {ssh_cm,<0.216.0>,{data,0,0,<<"true">>}}
Shell got {ssh_cm,<0.216.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.216.0>,{eof,0}}
Shell got {ssh_cm,<0.216.0>,{closed,0}}
ok
5>
Note that Erlang shell specific functions and control sequences like for example
h(). are not supported.

 I/O from a function called in an Erlang ssh daemon

Output to stdout on the server side is also displayed as well as the resulting
term from the function call:
$bash> ssh ssh.example.com -p 8989 'io:format("Hello!~n~nHow are ~p?~n",[you]).'
Hello!

How are you?
ok
$bash>
And similar for reading from stdin. As an example we use io:read/1 which
displays the argument as a prompt on stdout, reads a term from stdin and returns
it in an ok-tuple:
$bash> ssh ssh.example.com -p 8989 'io:read("write something: ").'
write something: [a,b,c].
{ok,[a,b,c]}
$bash>
The same example but using the Erlang ssh client:

Eshell V10.5.2 (abort with ^G)
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId,
 "io:read(\"write something: \").",
 infinity).
success
5> flush().
Shell got {ssh_cm,<0.92.0>,{data,0,0,<<"write something: ">>}}
ok
% All data is sent as binaries with string contents:
6> ok = ssh_connection:send(ConnectionRef, ChannelId, <<"[a,b,c].">>).
ok
7> flush().
ok
%% Nothing is received, because the io:read/1
%% requires the input line to end with a newline.

%% Send a newline (it could have been included in the last send):
8> ssh_connection:send(ConnectionRef, ChannelId, <<"\n">>).
ok
9> flush().
Shell got {ssh_cm,<0.92.0>,{data,0,0,<<"{ok,[a,b,c]}">>}}
Shell got {ssh_cm,<0.92.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.92.0>,{eof,0}}
Shell got {ssh_cm,<0.92.0>,{closed,0}}
ok
10>

 Configuring the server's (daemon's) command execution

Every time a daemon is started, it
enables one-time execution of commands as described in the
previous section unless explicitly
disabled.
There is often a need to configure some other exec evaluator to tailor the input
language or restrict the possible functions to call. There are two ways of doing
this which will be shown with examples below. See
ssh:daemon/2,3 and
exec_daemon_option() for details.
Examples of the two ways to configure the exec evaluator:
	Disable one-time execution.
To modify the daemon start example above to reject one-time execution
requests, we change Step 3 by adding the
option {exec, disabled} to:

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {exec, disabled}
]).
{ok,<0.54.0>}
3>
A call to that daemon will return the text "Prohibited." on stderr (depending on
the client and OS), and the exit status 255:
$bash> ssh ssh.example.com -p 8989 "test."
Prohibited.
$bash> echo $?
255
$bash>
And the Erlang client library also returns the text "Prohibited." on data type 1
instead of the normal 0 and exit status 255:
2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "test."
success
5> flush().
Shell got {ssh_cm,<0.106.0>,{data,0,1,<<"Prohibited.">>}}
Shell got {ssh_cm,<0.106.0>,{exit_status,0,255}}
Shell got {ssh_cm,<0.106.0>,{eof,0}}
Shell got {ssh_cm,<0.106.0>,{closed,0}}
ok
6>
	Install an alternative evaluator.
Start the damon with a reference to a fun() that handles the evaluation:

1> ssh:start().
ok
2> MyEvaluator = fun("1") -> {ok, some_value};
 ("2") -> {ok, some_other_value};
 ("3") -> {ok, V} = io:read("input erlang term>> "),
 {ok, V};
 (Err) -> {error,{bad_input,Err}}
 end.
3> {ok, Sshd} = ssh:daemon(1234, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {exec, {direct,MyEvaluator}}
]).
{ok,<0.275.0>}
4>
and call it:
$bash> ssh localhost -p 1234 1
some_value
$bash> ssh localhost -p 1234 2
some_other_value
I/O works:
$bash> ssh localhost -p 1234 3
input erlang term>> abc.
abc
Check that Erlang evaluation is disabled:
$bash> ssh localhost -p 1234 1+ 2.
Error {bad_input,"1+ 2."}
$bash>
Note that spaces are preserved and that no point (.) is needed at the end - that
was required by the default evaluator.
The error return in the Erlang client (The text as data type 1 and exit_status
255):
2> {ok, ConnectionRef} = ssh:connect(loopback, 1234, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "1+ 2.").
success
5> flush().
Shell got {ssh_cm,<0.106.0>,{data,0,1,<<"**Error** {bad_input,\"1+ 2.\"}">>}}
Shell got {ssh_cm,<0.106.0>,{exit_status,0,255}}
Shell got {ssh_cm,<0.106.0>,{eof,0}}
Shell got {ssh_cm,<0.106.0>,{closed,0}}
ok
6>
The fun() in the exec option could take up to three arguments (Cmd, User
and ClientAddress). See the
exec_daemon_option() for the details.
Note
An old, discouraged and undocumented way of installing an alternative
evaluator exists.
It still works, but lacks for example I/O possibility. It is because of that
compatibility we need the {direct,...} construction.

 SFTP Server

Start the Erlang ssh daemon with the SFTP subsystem:
1> ssh:start().
ok
2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {subsystems, [ssh_sftpd:subsystem_spec(
 [{cwd, "/tmp/sftp/example"}])
]}]).
{ok,<0.54.0>}
3>
Run the OpenSSH SFTP client:
$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest_user/.ssh/id_rsa \
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts ssh.example.com
Connecting to ssh.example.com...
sftp> pwd
Remote working directory: /tmp/sftp/example
sftp>

 SFTP Client

Fetch a file with the Erlang SFTP client:
1> ssh:start().
ok
2> {ok, ChannelPid, Connection} = ssh_sftp:start_channel("ssh.example.com", []).
{ok,<0.57.0>,<0.51.0>}
3> ssh_sftp:read_file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

 SFTP Client with TAR Compression

 Basic example

This is an example of writing and then reading a tar file:
{ok,HandleWrite} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [write]),
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:add(HandleWrite,),
...
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:close(HandleWrite),

%% And for reading
{ok,HandleRead} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [read]),
{ok,NameValueList} = erl_tar:extract(HandleRead,[memory]),
ok = erl_tar:close(HandleRead),

 Example with encryption

The previous Basic example can be extended with
encryption and decryption as follows:
%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,
Ivec0 = crypto:strong_rand_bytes(16),
DataSize = 1024, % DataSize rem 16 = 0 for aes_cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, Ivec0, DataSize} end,

%% How to encrypt:
EncryptFun =
 fun(PlainBin,Ivec) ->
 EncryptedBin = crypto:block_encrypt(aes_cbc256, Key, Ivec, PlainBin),
 {ok, EncryptedBin, crypto:next_iv(aes_cbc,EncryptedBin)}
 end,

%% What to do with the very last block:
CloseFun =
 fun(PlainBin, Ivec) ->
 EncryptedBin = crypto:block_encrypt(aes_cbc256, Key, Ivec,
 pad(16,PlainBin) %% Last chunk
),
 {ok, EncryptedBin}
 end,

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [write,{crypto,Cw}]),
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:add(HandleWrite,),
...
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
 fun(EncryptedBin,Ivec) ->
 PlainBin = crypto:block_decrypt(aes_cbc256, Key, Ivec, EncryptedBin),
 {ok, PlainBin, crypto:next_iv(aes_cbc,EncryptedBin)}
 end,

Cr = {InitFun,DecryptFun},
{ok,HandleRead} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [read,{crypto,Cw}]),
{ok,NameValueList} = erl_tar:extract(HandleRead,[memory]),
ok = erl_tar:close(HandleRead),

 Creating a Subsystem

A small ssh subsystem that echoes N bytes can be implemented as shown in the
following example:
-module(ssh_echo_server).
-behaviour(ssh_server_channel). % replaces ssh_daemon_channel
-record(state, {
	 n,
	 id,
	 cm
	 }).
-export([init/1, handle_msg/2, handle_ssh_msg/2, terminate/2]).

init([N]) ->
 {ok, #state{n = N}}.

handle_msg({ssh_channel_up, ChannelId, ConnectionManager}, State) ->
 {ok, State#state{id = ChannelId,
		 cm = ConnectionManager}}.

handle_ssh_msg({ssh_cm, CM, {data, ChannelId, 0, Data}}, #state{n = N} = State) ->
 M = N - size(Data),
 case M > 0 of
	true ->
	 ssh_connection:send(CM, ChannelId, Data),
	 {ok, State#state{n = M}};
	false ->
	 <<SendData:N/binary, _/binary>> = Data,
 ssh_connection:send(CM, ChannelId, SendData),
 ssh_connection:send_eof(CM, ChannelId),
	 {stop, ChannelId, State}
 end;
handle_ssh_msg({ssh_cm, _ConnectionManager,
		{data, _ChannelId, 1, Data}}, State) ->
 error_logger:format(standard_error, " ~p~n", [binary_to_list(Data)]),
 {ok, State};

handle_ssh_msg({ssh_cm, _ConnectionManager, {eof, _ChannelId}}, State) ->
 {ok, State};

handle_ssh_msg({ssh_cm, _, {signal, _, _}}, State) ->
 %% Ignore signals according to RFC 4254 section 6.9.
 {ok, State};

handle_ssh_msg({ssh_cm, _, {exit_signal, ChannelId, _, _Error, _}},
	 State) ->
 {stop, ChannelId, State};

handle_ssh_msg({ssh_cm, _, {exit_status, ChannelId, _Status}}, State) ->
 {stop, ChannelId, State}.

terminate(_Reason, _State) ->
 ok.
The subsystem can be run on the host ssh.example.com with the generated keys, as
described in Section
Running an Erlang ssh Daemon:
1> ssh:start().
ok
2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}
 {subsystems, [{"echo_n", {ssh_echo_server, [10]}}]}]).
{ok,<0.54.0>}
3>
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("ssh.example.com", 8989,
 [{user_dir, "/tmp/otptest_user/.ssh"}]).
 {ok,<0.57.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
4> success = ssh_connection:subsystem(ConnectionRef, ChannelId, "echo_n", infinity).
5> ok = ssh_connection:send(ConnectionRef, ChannelId, "0123456789", infinity).
6> flush().
{ssh_msg, <0.57.0>, {data, 0, 1, "0123456789"}}
{ssh_msg, <0.57.0>, {eof, 0}}
{ssh_msg, <0.57.0>, {closed, 0}}
7> {error, closed} = ssh_connection:send(ConnectionRef, ChannelId, "10", infinity).
See also ssh_client_channel (replaces ssh_channel(3)).

Terminology

 General Information

In the following terms that may cause confusion are explained.

 The term "user"

A "user" is a term that everyone understands intuitively. However, the
understandings may differ which can cause confusion.
The term is used differently in OpenSSH and SSH in
Erlang/OTP. The reason is the different environments and use cases that are not
immediately obvious.
This chapter aims at explaining the differences and giving a rationale for why
Erlang/OTP handles "user" as it does.

 In OpenSSH

Many have been in contact with the command 'ssh' on a Linux machine (or similar)
to remotly log in on another machine. One types
ssh host
to log in on the machine named host. The command prompts for your password on
the remote host and then you can read, write and execute as your user name
has rights on the remote host. There are stronger variants with
pre-distributed keys or certificates, but that are for now just details in the
authentication process.
You could log in as the user anotheruser with
ssh anotheruser@host
and you will then be enabled to act as anotheruser on the host if authorized
correctly.
So what does "your user name has rights" mean? In a UNIX/Linux/etc context it
is exactly as that context: The user could read, write and execute programs
according to the OS rules. In addition, the user has a home directory ($HOME)
and there is a $HOME/.ssh/ directory with ssh-specific files.
SSH password authentication
When SSH tries to log in to a host, the ssh protocol communicates the user name
(as a string) and a password. The remote ssh server checks that there is such a
user defined and that the provided password is acceptable.
If so, the user is authorized.
SSH public key authentication
This is a stronger method where the ssh protocol brings the user name, the
user's public key and some cryptographic information which we could ignore here.
The ssh server on the remote host checks:
	That the user has a home directory,
	that home directory contains a .ssh/ directory and
	the .ssh/ directory contains the public key just received in the
authorized_keys file

if so, the user is authorized.
The SSH server on UNIX/Linux/etc after a successful authentication
After a successful incoming authentication, a new process runs as the just
authenticated user.
Next step is to start a service according to the ssh request. In case of a
request of a shell, a new one is started which handles the OS-commands that
arrives from the client (that's "you").
In case of a sftp request, an sftp server is started in with the user's rights.
So it could read, write or delete files if allowed for that user.

 In Erlang/OTP SSH

For the Erlang/OTP SSH server the situation is different. The server executes in
an Erlang process in the Erlang emulator which in turn executes in an OS
process. The emulator does not try to change its user when authenticated over
the SSH protocol. So the remote user name is only for authentication purposes in
the Erlang/OTP SSH application.
Password authentication in Erlang SSH
The Erlang/OTP SSH server checks the user name and password in the following
order:
	If a pwdfun is defined, that one is called and the
returned boolean is the authentication result.
	Else, if the user_passwords option is
defined and the username and the password matches, the authentication is a
success.
	Else, if the option password is defined and
matches the password the authentication is a success. Note that the use of
this option is not recommended in non-test code.

Public key authentication in Erlang SSH
The user name, public key and cryptographic data (a signature) that is sent by
the client are used as follows (some steps left out for clarity):
	A callback module is selected using the options
key_cb.
	The callback module is used to check that the provided public key is one of
the user's pre-stored. In case of the default callback module, the files
authorized_keys and authorized_keys2 are searched in a directory found in
the following order:

	If the option user_dir_fun is
defined, that fun is called and the returned directory is used,
	Else, If the option user_dir is
defined, that directory is used,
	Else the subdirectory .ssh in the home directory of the user executing the
OS process of the Erlang emulator is used.

If the provided public key is not found, the authentication fails.
	Finally, if the provided public key is found, the signature provided by the
client is checked with the public key.

The Erlang/OTP SSH server after a successful authentication
After a successful authentication an Erlang process is handling the service
request from the remote ssh client. The rights of that process are those of the
user of the OS process running the Erlang emulator.
If a shell service request arrives to the server, an Erlang shell is opened in
the server's emulator. The rights in that shell is independent of the just
authenticated user.
In case of an sftp request, an sftp server is started with the rights of the
user of the Erlang emulator's OS process. So with sftp the authenticated user
does not influence the rights.
So after an authentication, the user name is not used anymore and has no
influence.

Configuration in SSH

 Introduction

The OTP SSH app can be configurated by a large amount of Options. This chapter
will not go into details of what each of the options does. It will however
describe and define different ways by which they could be entered.
Options for hardening are described in the Hardening SSH
chapter. How the options for algorithm configuration interact are described in
the Configuring algorithms in SSH chapter.

 Options configuration

There are from OTP-23.0 two main ways to set an option:
	Like before, in the Options parameter in the Erlang code in a call to for
example ssh:daemon/3 or ssh:connect/3 or any of their variants. Example:
ssh:connect(22, [{user,"foo"}])

	In OTP Configuration Parameters:
	In the erl command line:
erl -ssh user \"foo\"

	In the ssh.app file, in the env part
{application, ssh,
 [{description, "SSH-2 for Erlang/OTP"},
 {vsn, "4.9"},
 {modules, [ssh,
 ...
 ssh_xfer]},
 {registered, []},
 {applications, [kernel, stdlib, crypto, public_key]},
 {env, [{user, "bar"]}, % <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< HERE
 {mod, {ssh_app, []}},
 ...

	In a .config file:
erl -config ex1
where ex1.config contains:
[
{ssh, [{user, "foo"}]}
].

If the option is intended only for a server or for a client, it may be set in
this way:
[
{ssh, [{server_options,[{user, "foo"}]},
 {client_options,[{user, "bar"}]}
].
A server (daemon) will use the user name foo, and a client will use the name
bar.

 Precedence

If an option is set in more than one way, what happens?
There is an ordering, which is:
	Level 0: Hard-coded default values in the OTP SSH source code
	Level 1: OTP Configuration Parameters
	Level 2: Options in the OTP Configuration Parameters
server_options or client_options
	Level 3: Options in argument list to a function

If the same option is set at two different levels, the one at the highest level
is used.
The only exception is the
modify_algorithms common option.
They are all applied in ascending level order on the set of algorithms. So a
modify_algorithms on level one is applied before one of level two and so on.
If there is an
preferred_algorithms option on
some level the whole set is replaced by that in that option and all
modify_algorithms are applied in level ordering.
The reason for applying all
modify_algorithms in level order,
is to enable the user to add an algorithm that has been removed from the default
set without code changes, only by adding an option in a config file. This can be
used to interoperate with legacy systems that still uses algorithms no longer
considered secure enough to be supported by default.

 Algorithm configuration

There is a separate chapter about how
preferred_algorithms and
modify_algorithms co-operate. How
the different configuration levels affect them, is described here in this
section.
The ssh:start/0 function
If the application SSH is not started, the command
ssh:default_algorithms/0 delivers the list of default (hardcoded) algorithms
with respect to the support in the current cryptolib.
If the application SSH is started, the command
ssh:default_algorithms/0 delvers the list of algorithms after application of
level 0 and level 1 configurations.
Here is an example. The config-file has the following contents:
$ cat ex2.config
[
 {ssh, [{preferred_algorithms, [{cipher, ['aes192-ctr']},
 			 {public_key, ['ssh-rsa']},
 {kex, ['ecdh-sha2-nistp384']},
 {mac, ['hmac-sha1']}]}]}
].
Erlang is started with ex2.config as configuration and we check the default
set of algorithms before starting ssh:
$ erl -config ex2
Erlang/OTP 23 [RELEASE CANDIDATE 1] [erts-10.6.4] [source-96a0823109] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Eshell V10.6.4 (abort with ^G)
1> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256','curve25519-sha256',
 'curve25519-sha256@libssh.org','curve448-sha512',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-ed25519','ssh-ed448','ssh-rsa',
 'rsa-sha2-256','rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['chacha20-poly1305@openssh.com',
 'aes256-gcm@openssh.com','aes256-ctr','aes192-ctr',
 'aes128-gcm@openssh.com','aes128-ctr','aes256-cbc',
 'aes192-cbc','aes128-cbc','3des-cbc']},
 {server2client,['chacha20-poly1305@openssh.com',
 'aes256-gcm@openssh.com','aes256-ctr','aes192-ctr',
 'aes128-gcm@openssh.com','aes128-ctr','aes256-cbc',
 'aes192-cbc','aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
Note that the algorithms in the file ex2.config is not yet applied. They will
be when we start ssh:
2> ssh:start().
ok
3> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes192-ctr']},
 {server2client,['aes192-ctr']}]},
 {mac,[{client2server,['hmac-sha1']},
 {server2client,['hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
4>
We see that the algorithm set is changed to the one in the ex2.config. Since
compression is not specified in the file, the hard-coded default is still used
for that entry.
Establishing a connection (ssh:connect et al) or starting a daemon (ssh:daemon)
Both when the client establishes a connection with ssh:connect or other
functions, or a daemon is started with ssh:daemon, the option lists in the
function calls are also used.
If a client is started (ssh:connect et al), the environment variable
client_options is used. Similarly for a daemon the server_options variable
is handled.
If any preferred_algorithms is
present, the one with the highest level is used, that is, the Option list
parameter has the highest priority. Then the
modify_algorithms on all levels in
order starting with level 0 are applied.
We continue the example above by connecting to a server and modifying the kex
algorithm set. We remove the only one ('ecdh-sha2-nistp384') and add
'curve25519-sha256@libssh.org' by appending it to the now empty list:
4> {ok,C} = ssh:connect(loopback, 22,
 [{modify_algorithms,
 [{rm,
 [{kex,['ecdh-sha2-nistp384']}]
				 },
 {append,
			 [{kex,['curve25519-sha256@libssh.org']}]
				 }
]
	 }
]).
{ok,>0.118.0>}
We check which algorithms are negotiated by the client and the server, and note
that the (only) kex algorithm 'curve25519-sha256@libssh.org' was selected:
5> ssh:connection_info(C, algorithms).
{algorithms,[{kex,'curve25519-sha256@libssh.org'},
 {hkey,'ssh-rsa'},
 {send_mac,'hmac-sha1'},
 {recv_mac,'hmac-sha1'},
 {encrypt,'aes192-ctr'},
 {decrypt,'aes192-ctr'},
 {compress,none},
 {decompress,none},
 {send_ext_info,false},
 {recv_ext_info,true}]}
Example of modify_algorithms handling
We will now check if the
modify_algorithms on a lower level
is applied to a
preferred_algorithms on a higher
level. We will do that by enabling the ssh-dss algorithm that is supported,
but not in the default set.
The config file ex3.config has the contents:
[
 {ssh, [{modify_algorithms,
 [{prepend, [{public_key, ['ssh-dss']}]}]
 }]}
].
A newly started erlang shell shows that no 'ssh-dss' is present in the
public_key entry:
1> proplists:get_value(public_key, ssh:default_algorithms()).
['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-ed25519','ssh-ed448',
 'rsa-sha2-256','rsa-sha2-512','ssh-rsa']
2>
A call to ssh:connect/3 removes all algorithms but one of each type:
2> ssh:start().
ok
3> {ok,C} = ssh:connect(loopback, 22,
 [{preferred_algorithms,
 [{public_key, ['ecdsa-sha2-nistp256']},
			 {kex, ['ecdh-sha2-nistp256']},
		 {cipher, ['chacha20-poly1305@openssh.com']},
			 {mac, ['hmac-sha2-256']},
			 {compression, [none]}
]}
]).
{ok,<0.101.0>}
4> ssh:connection_info(C,algorithms).
{algorithms,[{kex,'ecdh-sha2-nistp256'},
 {hkey,'ssh-dss'},
 {send_mac,'chacha20-poly1305@openssh.com'},
 {recv_mac,'chacha20-poly1305@openssh.com'},
 {encrypt,'chacha20-poly1305@openssh.com'},
 {decrypt,'chacha20-poly1305@openssh.com'},
 {compress,none},
 {decompress,none},
 {send_ext_info,false},
 {recv_ext_info,true}]}
5>
But 'ssh-dss' is selected although the call inserted only
'ecdsa-sha2-nistp256' as acceptable.
This example showed that we could augment the set of algorithms with a
config-file without the need to change the actual call.
For demonstration purposes we used prepend instead of append. This forces
the negotiation to select ssh-dss since the the full list of public key
algorithms was ['ssh-dss','ecdsa-sha2-nistp256']. Normally it is safer to
append a non-default algorithm.

Configuring algorithms in SSH

 Introduction

To fully understand how to configure the algorithms, it is essential to have a
basic understanding of the SSH protocol and how OTP SSH app handles the
corresponding items.
The first subsection will give a short background of the SSH protocol while
later sections describes the implementation and provides some examples.
How the different levels of configuration "interfere" with this, see the section
Algorithm Configuration in the
chapter Configuration in SSH.

 Basics of the ssh protocol's algorithms handling

SSH uses different sets of algorithms in different phases of a session. Which
algorithms to use is negotiated by the client and the server at the beginning of
a session. See RFC 4253, "The Secure
Shell (SSH) Transport Layer Protocol" for details.
The negotiation is simple: both peers sends their list of supported alghorithms
to the other part. The first algorithm on the client's list that also in on the
server's list is selected. So it is the client's ordering of the list that
gives the priority for the algorithms.
There are five lists exchanged in the connection setup. Three of them are also
divided in two directions, to and from the server.
The lists are (named as in the SSH application's options):
	kex - Key exchange
An algorithm is selected for computing a secret encryption key. Among examples
are: the old nowadays week 'diffie-hellman-group-exchange-sha1' and the very
strong and modern 'ecdh-sha2-nistp512'.

	public_key - Server host key
The asymmetric encryption algorithm used in the server's private-public host
key pair. Examples include the well-known RSA 'ssh-rsa' and elliptic curve
'ecdsa-sha2-nistp521'.

	cipher - Symmetric cipher algorithm used for the payload encryption.
This algorithm will use the key calculated in the kex phase (together with
other info) to generate the actual key used. Examples are tripple-DES
'3des-cbc' and one of many AES variants 'aes192-ctr'.
This list is actually two - one for each direction server-to-client and
client-to-server. Therefore it is possible but rare to have different
algorithms in the two directions in one connection.

	mac - Message authentication code
"Check sum" of each message sent between the peers. Examples are SHA
'hmac-sha1' and SHA2 'hmac-sha2-512'.
This list is also divided into two for the both directions

	compression - If and how to compress the message. Examples are none,
that is, no compression and zlib.
This list is also divided into two for the both directions

 The SSH app's mechanism

The set of algorithms that the SSH app uses by default depends on the algorithms
supported by the:
	crypto app,
	The cryptolib OTP is linked with, usually the one the OS uses, probably
OpenSSL,
	and finally what the SSH app implements

Due to this, it impossible to list in documentation what algorithms that are
available in a certain installation.
There is an important command to list the actual algorithms and their ordering:
ssh:default_algorithms/0.
0> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
To change the algorithm list, there are two options which can be used in
ssh:connect/2,3,4 and ssh:daemon/2,3. The
options could of course be used in all other functions that initiates
connections.
The options are
preferred_algorithms and
modify_algorithms. The first one
replaces the default set, while the latter modifies the default set.

 Replacing the default set: preferred_algorithms

See the Reference Manual for
details
Here follows a series of examples ranging from simple to more complex.
To forsee the effect of an option there is an experimental function
ssh:chk_algos_opts(Opts). It mangles the options preferred_algorithms and
modify_algorithms in the same way as ssh:daemon, ssh:connect and their
friends does.

 Example 1

Replace the kex algorithms list with the single algorithm
'diffie-hellman-group14-sha256':
1> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{kex, ['diffie-hellman-group14-sha256']}
]
 }
]).
[{kex,['diffie-hellman-group14-sha256']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
Note that the unmentioned lists (public_key, cipher, mac and
compression) are unchanged.

 Example 2

In the lists that are divided in two for the two directions (for example cipher) it is
possible to change both directions at once:
2> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
Note that both lists in cipher has been changed to the provided value
('aes128-ctr').

 Example 3

In the lists that are divided in two for the two directions (for example cipher) it is
possible to change only one of the directions:
3> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,[{client2server,['aes128-ctr']}]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

 Example 4

It is of course possible to change more than one list:
4> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']},
		 {mac,['hmac-sha2-256']},
 {kex,['ecdh-sha2-nistp384']},
		 {public_key,['ssh-rsa']},
		 {compression,[{server2client,[none]},
		 {client2server,[zlib]}]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256']},
 {server2client,['hmac-sha2-256']}]},
 {compression,[{client2server,[zlib]},
 {server2client,[none]}]}]
Note that the order of the tuples in the lists does not matter.

 Modifying the default set: modify_algorithms

A situation where it might be useful to add an algorithm is when one need to use
a supported but disabled one. An example is the 'diffie-hellman-group1-sha1'
which nowadays is very unsecure and therefore disabled. It is however still
supported and might be used.
The option preferred_algorithms may be complicated to use for adding or
removing single algorithms. First one has to list them with
ssh:default_algorithms() and then do changes in the lists.
To facilitate addition or removal of algorithms the option modify_algorithms
is available. See the
Reference Manual for details.
The option takes a list with instructions to append, prepend or remove
algorithms:
{modify_algorithms, [{append, ...},
 {prepend, ...},
		 {rm, ...}
]}
Each of the ... can be a algs_list() as the argument to the
preferred_algorithms option.

 Example 5

As an example let's add the Diffie-Hellman Group1 first in the kex list. It is
supported according to Supported algorithms.
5> ssh:chk_algos_opts(
 [{modify_algorithms,
	 [{prepend,
	 [{kex,['diffie-hellman-group1-sha1']}]
		 }
]
 }
]).
[{kex,['diffie-hellman-group1-sha1','ecdh-sha2-nistp384',
 'ecdh-sha2-nistp521','ecdh-sha2-nistp256',
 'diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
And the result shows that the Diffie-Hellman Group1 is added at the head of the
kex list

 Example 6

In this example, we in put the 'diffie-hellman-group1-sha1' first and also move
the 'ecdh-sha2-nistp521' to the end in the kex list, that is, append it.
6> ssh:chk_algos_opts(
 [{modify_algorithms,
	 [{prepend,
	 [{kex, ['diffie-hellman-group1-sha1']}
]},
		{append,
 [{kex, ['ecdh-sha2-nistp521']}
]}
]
 }
]).
[{kex,['diffie-hellman-group1-sha1','ecdh-sha2-nistp384',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1','ecdh-sha2-nistp521']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',

]
Note that the appended algorithm is removed from its original place and then
appended to the same list.

 Example 7

In this example, we use both options (preferred_algorithms and
modify_algorithms) and also try to prepend an unsupported algorithm. Any
unsupported algorithm is quietly removed.
7> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']},
	 {mac,['hmac-sha2-256']},
 {kex,['ecdh-sha2-nistp384']},
		{public_key,['ssh-rsa']},
		{compression,[{server2client,[none]},
		 {client2server,[zlib]}]}
]
 },
 {modify_algorithms,
	 [{prepend,
	 [{kex, ['some unsupported algorithm']}
]},
		{append,
 [{kex, ['diffie-hellman-group1-sha1']}
]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','diffie-hellman-group1-sha1']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256']},
 {server2client,['hmac-sha2-256']}]},
 {compression,[{client2server,[zlib]},
 {server2client,[none]}]}]
It is of course questionable why anyone would like to use the both these options
together, but it is possible if an unforeseen need should arise.

 Example 8

In this example, we need to use a diffie-hellman-group1-sha1 key exchange
algorithm although it is unsafe and disabled by default.
We use the modify_algorithms
option, because we want to keep all other algorithm definitions.
We add the option:
 {modify_algorithms, [{append, [{kex,['diffie-hellman-group1-sha1']}]}]}
either to the Options list in a function call, in the ssh.app file or in a
.config file for the erl command. See the chapter
Configuration in SSH in the SSH User's Guide.

 Example 9

In this example, we need to use a DSA key for sign and verify. It might be
either as a user's key, a host's key or both.
To do that, we enable the 'ssh-dss' algorithm that is disabled by default by
security reasons. We use the
modify_algorithms option, because
we want to keep all other algorithm definitions.
We add the option:
 {modify_algorithms, [{append, [{public_key,['ssh-dss']}]}]}
either to the Options list in a function call, in the ssh.app file or in a
.config file for the erl command. See the chapter
Configuration in SSH in the SSH User's Guide.

Hardening

 Introduction

The Erlang/OTP SSH application is intended to be used in other applications as a
library.
Different applications using this library may have very different requirements.
One application could be running on a high performance server, while another is
running on a small device with very limited cpu capacity. For example, the first
one may accept many users simultaneously logged in, while the second one wants
to limit them to only one.
That simple example shows that it is impossible to deliver the SSH application
with default values on hardening options as well on other options that suites
every need.
The purpose of this guide is to discuss the different hardening options
available, as a guide to the reader. Configuration in general is described in
the Configuration in SSH chapter.

 Resilience to DoS attacks

The following applies to daemons (servers).
DoS (Denial of Service) attacks are hard to fight at the node level. Here are
firewalls and other means needed, but that is out of scope for this guide.
However, some measures could be taken in the configuration of the SSH server to
increase the resilence. The options to use are:

 Counters and parallelism

	max_sessions - The
maximum number of simultaneous sessions that are accepted at any time for this
daemon. This includes sessions that are being authorized. The default is that
an unlimited number of simultaneous sessions are allowed. It is a good
candidate to set if the capacity of the server is low or a capacity margin is
needed.

	max_channels - The
maximum number of channels that are accepted for each connection. The default
is unlimited.

	parallel_login - If set
to false (the default value), only one login is handled at a time. If set to
true, the number of simultaneous login attempts are limited by the value of
the max_sessions option.

 Timeouts

	hello_timeout - If the client
fails to send the first ssh message after a tcp connection setup within this
time (in milliseconds), the connection is closed. The default value is 30
seconds. This is actually a generous time, so it can lowered to make the
daemon less prone to DoS attacks.

	negotiation_timeout -
Maximum time in milliseconds for the authentication negotiation counted from
the TCP connection establishment. If the client fails to log in within this
time the connection is closed. The default value is 2 minutes. It is quite a
long time, but can lowered if the client is supposed to be fast like if it is
a program logging in.

	idle_time - Sets a time-out on a
connection when no channels are left after closing the final one. It defaults
to infinity.

	max_initial_idle_time -
Sets a time-out on a connection that will expire if no channel is opened on
the connection. The timeout is started when the authentication phase is
completed. It defaults to infinity.

A figure clarifies when a timeout is started and when it triggers:
[image: SSH server timeouts]

 Verifying the remote daemon (server) in an SSH client

Every SSH server presents a public key - the host key - to the client while
keeping the corresponding private key in relatively safe privacy.
The client checks that the host that presented the public key also possesses the
private key of the key-pair. That check is part of the SSH protocol.
But how can the client know that the host really is the one that it tried to
connect to and not an evil one impersonating the expected one using its own
valid key-pair? There are two alternatives available with the default key
handling plugin ssh_file. The alternatives are:
	Pre-store the host key - * For the default handler ssh_file, store the
valid host keys in the file known_hosts and
set the option
silently_accept_hosts
to false.
	or, write a specialized key handler using the
SSH client key API that accesses the pre-shared
key in some other way.

	Pre-store the "fingerprint" (checksum) of the host key - *
silently_accept_hosts
	accept_callback()
	{HashAlgoSpec, accept_callback()}

 Verifying the remote client in a daemon (server)

	Password checking - The default password checking is with the list in the
user_passwords option in the SSH daemon. It
could be replaced with a pwdfun plugin. The arity
four variant (pwdfun_4()) can also be used for
introducing delays after failed password checking attempts. Here is a simple
example of such a pwdfun:
fun(User, Password, _PeerAddress, State) ->
 case lists:member({User,Password}, my_user_pwds()) of
 true ->
 {true, undefined}; % Reset delay time
 false when State == undefined ->
 timer:sleep(1000),
 {false, 2000}; % Next delay is 2000 ms
 false when is_integer(State) ->
 timer:sleep(State),
 {false, 2*State} % Double the delay for each failure
 end
end.
If a public key is used for logging in, there is normally no checking of the
user name. It could be enabled by setting the option
pk_check_user to true. In that case the
pwdfun will get the atom pubkey in the password argument.

 Hardening in the cryptographic area

 Algorithm selection

One of the cornerstones of security in SSH is cryptography. The development in
crypto analysis is fast, and yesterday's secure algorithms are unsafe today.
Therefore some algorithms are no longer enabled by default and that group grows
with time. See the
SSH (App) for a list of
supported and of disabled algorithms. In the User's Guide the chapter
Configuring algorithms in SSH describes the options for
enabling or disabling algorithms -
preferred_algorithms and
modify_algorithms.

 Re-keying

In the setup of the SSH connection a secret cipher key is generated by
co-operation of the client and the server. Keeping this key secret is crucial
for keeping the communication secret. As time passes and encrypted messages are
exchanged, the probability that a listener could guess that key increases.
The SSH protocol therefore has a special operation defined - key
re-negotiation or re-keying. Any side (client or server) could initiate the
re-keying and the result is a new cipher key. The result is that the
eves-dropper has to restart its evil and dirty craftmanship.
See the option rekey_limit for a
description.

 Hardening of the SSH protocol - both daemons and clients

 Disabling shell and exec in a daemon

A daemon has two services for evaluating tasks on behalf of a remote client. The
exec server-side service takes a string provided by the client, evaluates it
and returns the result. The shell function enables the client to open a shell
in the shell host.
Those service could - and should - be disabled when they are not needed. The
options exec and
shell are enabled per default but could be set
to disabled if not needed. The same options could also install handlers for
the string(s) passed from the client to the server.

 The id string

One way to reduce the risk of intrusion is to not convey which software and
which version the intruder is connected to. This limits the risk of an intruder
exploiting known faults or peculiarities learned by reading the public code.
Each SSH client or daemon presents themselves to each other with brand and
version. This may look like
SSH-2.0-Erlang/4.10
or
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
This brand and version may be changed with the option
id_string. We start a daemon with that
option:
	ssh:daemon(1234, [{id_string,"hi there"}, ...]).
and the daemon will present itself as:
SSH-2.0-hi there
It is possible to replace the string with one randomly generated for each
connection attempt. See the reference manual for
id_string.

 Client connection options

A client could limit the time for the initial tcp connection establishment with
the option connect_timeout. The time
is in milliseconds, and the initial value is infinity.
The negotiation (session setup time) time can be limited with the parameter
NegotiationTimeout in a call establishing an ssh session, for example
ssh:connect/3.

ssh

Main API of the ssh application
This is the interface module for the SSH application. The Secure Shell (SSH)
Protocol is a protocol for secure remote login and other secure network services
over an insecure network. See ssh for details of
supported RFCs, versions, algorithms and unicode handling.
With the SSH application it is possible to start clients and to start
daemons (servers).
Clients are started with connect/2, connect/3 or connect/4. They open an
encrypted connection on top of TCP/IP. In that encrypted connection one or more
channels could be opened with
ssh_connection:session_channel/2,4.
Each channel is an isolated "pipe" between a client-side process and a
server-side process. Those process pairs could handle for example file transfers
(sftp) or remote command execution (shell, exec and/or cli). If a custom shell
is implemented, the user of the client could execute the special commands
remotely. Note that the user is not necessarily a human but probably a system
interfacing the SSH app.
A server-side subssystem (channel) server is requested by the client with
ssh_connection:subsystem/4.
A server (daemon) is started with daemon/1, daemon/2 or
daemon/3. Possible channel handlers (subsystems) are declared with
the subsystem option when the daemon is
started.
To just run a shell on a remote machine, there are functions that bundles the
needed three steps needed into one: shell/1,2,3. Similarly, to just
open an sftp (file transfer) connection to a remote machine, the simplest way is
to use ssh_sftp:start_channel/1,2,3.
To write your own client channel handler, use the behaviour
ssh_client_channel. For server channel handlers use ssh_server_channel
behaviour (replaces ssh_daemon_channel).
Both clients and daemons accepts options that controls the exact behaviour. Some
options are common to both. The three sets are called
Client Options, Daemon Options
and Common Options.
The descriptions of the options uses the
Erlang Type Language with explaining text.
Note
See also SSH Application Reference and Examples section.

 Keys and files

A number of objects must be present for the SSH application to work. Those
objects are per default stored in files. The default names, paths and file
formats are the same as for OpenSSH. Keys could be
generated with the ssh-keygen program from OpenSSH. See the
User's Guide.
The paths could easily be changed by options:
user_dir and
system_dir.
A completely different storage could be interfaced by writing callback modules
using the behaviours ssh_client_key_api and/or ssh_server_key_api. A
callback module is installed with the option
key_cb to the client and/or the daemon.

 Daemons

The keys are by default stored in files:
	Mandatory: one or more Host key(s), both private and public. Default is to
store them in the directory /etc/ssh in the files
	ssh_host_dsa_key and ssh_host_dsa_key.pub
	ssh_host_rsa_key and ssh_host_rsa_key.pub
	ssh_host_ecdsa_key and ssh_host_ecdsa_key.pub

The host keys directory could be changed with the option
system_dir.

	Optional: one or more User's public key in case of publickey
authorization. Default is to store them concatenated in the file
.ssh/authorized_keys in the user's home directory.
The user keys directory could be changed with the option
user_dir.

 Clients

The keys and some other data are by default stored in files in the directory
.ssh in the user's home directory.
The directory could be changed with the option
user_dir.
	Optional: a list of Host public key(s) for previously connected hosts. This
list is handled by the SSH application without any need of user assistance.
The default is to store them in the file known_hosts.
The host_accepting_client_options/0 are associated with this list of keys.

	Optional: one or more User's private key(s) in case of publickey
authorization. The default files are
	id_dsa and id_dsa.pub
	id_rsa and id_rsa.pub
	id_ecdsa and id_ecdsa.pub

 Summary

 Types: Client Options

 ssh_agent - ssh v5.2.1

ssh_agent

Callback module for using an SSH agent instead of the default ssh_file callback.
This module defines a callback handler for the communication with an
SSH Agent and can be
used to replace the default callback. This allows to issue
signing requests to an agent that stores SSH private keys to perform
authentication.
Ssh_agent implements the ssh_client_key_api, to allow it to be used by
setting the option key_cb when starting a
client (with for example ssh:connect,
ssh:shell).
 {key_cb, {ssh_agent, []}}
The agent communication is established through a UNIX domain socket. By default,
the socket path will be fetched from the SSH_AUTH_SOCK environment variable,
which is the default socket path in the agent implementation of
OpenSSH.
 In order to set a different socket path the socket_path
option can be set.
 {key_cb, {ssh_agent, [{socket_path, SocketPath}]}}
Note
The functions are Callbacks for the SSH app. They are not intended to be
called from the user's code!

 Summary

 Types: Options for the ssh_agent callback module

 ssh_client_channel - ssh v5.2.1

ssh_client_channel behaviour

-behaviour(ssh_client_channel). (Replaces ssh_channel)
Note
This module replaces ssh_channel.
The old module is still available for compatibility, but should not be used
for new programs. The old module will not be maintained except for some error
corrections

SSH services (clients and servers) are implemented as channels that are
multiplexed over an SSH connection and communicates over the
SSH Connection Protocol. This module
provides a callback API that takes care of generic channel aspects for clients,
such as flow control and close messages. It lets the callback functions take
care of the service (application) specific parts. This behavior also ensures
that the channel process honors the principal of an OTP-process so that it can
be part of a supervisor tree. This is a requirement of channel processes
implementing a subsystem that will be added to the ssh applications supervisor
tree.
Note
When implementing a ssh subsystem for daemons, use
-behaviour(ssh_server_channel) (Replaces
ssh_daemon_channel) instead.

Dont
Functions in this module are not supposed to be called outside a module
implementing this behaviour!

 Callback timeouts

The timeout values that can be returned by the callback functions have the same
semantics as in a gen_server. If the time-out occurs, handle_msg/2 is called as
handle_msg(timeout, State).

 Summary

 Types

 ssh_client_key_api - ssh v5.2.1

ssh_client_key_api behaviour

-behaviour(ssh_client_key_api).
Behavior describing the API for public key handling of an SSH client. By
implementing the callbacks defined in this behavior, the public key handling of
an SSH client can be customized. By default the ssh application implements
this behavior with help of the standard OpenSSH files, see the
ssh application manual.

 Summary

 Types

 ssh_connection - ssh v5.2.1

ssh_connection

This module provides API functions to send SSH Connection Protocol events to the
other side of an SSH channel.
The SSH Connection Protocol is used by
clients and servers, that is, SSH channels, to communicate over the SSH
connection. The API functions in this module send SSH Connection Protocol
events, which are received as messages by the remote channel handling the remote
channel. The Erlang format of thoose messages is (see also
below):
{ssh_cm, ``t:ssh:connection_ref/0``, ``t:channel_msg/0``}
If the ssh_client_channel behavior is used to implement the channel process,
these messages are handled by
handle_ssh_msg/2.

 Summary

 Types: SSH Connection Protocol: General

 ssh_file - ssh v5.2.1

ssh_file

Default callback module for the client's and server's database operations in the
ssh application
This module is the default callback handler for the client's and the server's
user and host "database" operations. All data, for instance key pairs, are
stored in files in the normal file system. This page documents the files, where
they are stored and configuration options for this callback module.
The intention is to be compatible with the OpenSSH
storage in files. Therefore it mimics directories and filenames of
OpenSSH.
Ssh_file implements the ssh_server_key_api and the ssh_client_key_api.
This enables the user to make an own interface using for example a database
handler.
Such another callback module could be used by setting the option
key_cb when starting a client or a server
(with for example ssh:connect, ssh:daemon
of ssh:shell).
Note
The functions are Callbacks for the SSH app. They are not intended to be
called from the user's code!

 Files, directories and who uses them

 Daemons

Daemons uses all files stored in the SYSDIR directory.
Optionally, in case of publickey authorization, one or more of the remote
user's public keys in the USERDIR directory are used.
See the files USERDIR/authorized_keys and
USERDIR/authorized_keys2.

 Clients

Clients uses all files stored in the USERDIR directory.

 Directory contents

	 LOCALUSER
The user name of the OS process running the Erlang virtual machine (emulator).

	 SYSDIR
This is the directory holding the server's files:
	 ssh_host_dsa_key - private dss host key (optional)
	ssh_host_rsa_key - private rsa host key
(optional)
	ssh_host_ecdsa_key - private ecdsa host key
(optional)
	ssh_host_ed25519_key - private eddsa host
key for curve 25519 (optional)
	ssh_host_ed448_key - private eddsa host key
for curve 448 (optional)

The key files could be generated with OpenSSH's ssh-keygen command.
At least one host key must be defined. The default value of SYSDIR is
/etc/ssh.
For security reasons, this directory is normally accessible only to the root
user.
To change the SYSDIR, see the system_dir
option.

	 USERDIR
This is the directory holding the files:
	authorized_keys and, as second alternative
authorized_keys2 - the user's public keys are
stored concatenated in one of those files.
It is composed of lines as for
OpenSSH:
(options)? keytype base64-encoded-key comment
where
options :: option(,option)*
option :: % All options are skipped
keytype :: 'ssh-dsa'
 | 'ssh-rsa'
 | 'ssh-ecdsa-nistp256'
 | 'ssh-ecdsa-nistp384'
 | 'ssh-ecdsa-nistp521'
 | 'ssh-ed25519'
 | 'ssh-ed448'
base64-encoded-key :: % The user's public key
comment :: % Comments are skipped

	known_hosts - host keys from hosts visited
concatenated. The file is created and used by the client.
It is composed of lines as for
OpenSSH:
(option)? pattern(,pattern)* keytype key (comment)?
where
option :: '@revoked'
pattern :: host | '[' host ']:' port
host :: ip-address | hostname | '*'
port :: portnumber | '*'
keytype :: 'ssh-dsa'
 | 'ssh-rsa'
 | 'ssh-ecdsa-nistp256'
 | 'ssh-ecdsa-nistp384'
 | 'ssh-ecdsa-nistp521'
 | 'ssh-ed25519'
 | 'ssh-ed448'
key :: % encoded key from eg ssh_host_*.pub

	 id_dsa - private dss user key
(optional)

	id_rsa - private rsa user key (optional)

	id_ecdsa - private ecdsa user key (optional)

	id_ed25519 - private eddsa user key for curve 25519
(optional)

	id_ed448 - private eddsa user key for curve 448
(optional)

The key files could be generated with OpenSSH's ssh-keygen command.
The default value of USERDIR is
/home/LOCALUSER/.ssh.
To change the USERDIR, see the user_dir option

 Summary

 Types: Options for the default ssh_file callback module

 ssh_server_channel - ssh v5.2.1

ssh_server_channel behaviour

-behaviour(ssh_server_channel). (Replaces ssh_daemon_channel)
Note
This module replaces ssh_daemon_channel.
The old module is still available for compatibility, but should not be used
for new programs. The old module will not be maintained except for some error
corrections

SSH services (clients and servers) are implemented as channels that are
multiplexed over an SSH connection and communicates over the
SSH Connection Protocol. This module
provides a callback API that takes care of generic channel aspects for daemons,
such as flow control and close messages. It lets the callback functions take
care of the service (application) specific parts. This behavior also ensures
that the channel pro