

 common_test

 v1.27

 [image: Logo]

 Table of contents

 	Common Test Application

 	Common Test Release Notes

 	User's Guides

 	Introduction

 	Common Test Basics

 	Getting Started

 	Installation

 	Writing Test Suites

 	Test Structure

 	Examples and Templates

 	Running Tests and Analyzing Results

 	External Configuration Data

 	Code Coverage Analysis

 	Using Common Test for Large-Scale Testing

 	Event Handling

 	Dependencies between Test Cases and Suites

 	Common Test Hooks

 	Some Thoughts about Testing

 	Common Test's Property Testing Support: ct_property_test

 	Command Line Tools

 	ct_run

 	

 	Modules

 	ct

 	ct_cover

 	ct_ftp

 	ct_hooks

 	ct_master

 	ct_netconfc

 	ct_property_test

 	ct_rpc

 	ct_slave

 	ct_snmp

 	ct_ssh

 	ct_suite

 	ct_telnet

 	ct_testspec

 	unix_telnet

Common Test Application

A framework for automated testing of any target nodes.

 Description

The Common Test framework is an environment for implementing and performing
automatic and semi-automatic execution of test cases.
In brief, Common Test supports:
	Automated execution of test suites (sets of test cases)
	Logging of events during execution
	HTML presentation of test suite results
	HTML presentation of test suite code
	Support functions for test suite authors
	Step-by-step execution of test cases

Common Test Release Notes

 Common_Test 1.27

 Improvements and New Features

	Calls to ct:capture_start/0 and ct:capture_stop/0 are now synchronous to ensure that all output is captured.
Own Id: OTP-18658 Aux Id: PR-7380

	The order in which multiple hooks are executed can now be reversed after each config function. See CTH Execution Order.
Own Id: OTP-18682 Aux Id: GH-7397, PR-7496, ERIERL-43

	The default CSS will now include a basic dark mode handling if it is preferred by the browser.
Own Id: OTP-18761 Aux Id: PR-7428

	-callback attributes have been added to ct_suite and ct_hooks.
Own Id: OTP-18781 Aux Id: PR-7701

	The built-in cth_log_redirect hook can now be configured to replace default logger reports in terminal with HTML logs.
Own Id: OTP-18875 Aux Id: PR-7891

	Error handling for the ct_property_test framework has been enhanced.
Own Id: OTP-18881 Aux Id: PR-7824

	Enhance test case documentation, making it clear how a test case can be failed.
Own Id: OTP-18892 Aux Id: PR-7869

	The failing line in the test source code is now colored to make it easier to find on the screen.
Own Id: OTP-18898 Aux Id: PR-7917

	Function specifications and types have been added to all public API functions.
Own Id: OTP-18913

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	The suite execution elapsed time is now included in the index page.
Own Id: OTP-18981 Aux Id: GH-7972, PR-8112

 Common_Test 1.26.2

 Fixed Bugs and Malfunctions

	With this change, the last column in common_test testcase log file is modified to now show the total sum of each time in the table rows, and Elapsed Time which is a clock time spent to run above functions. The Elapsed Time is the same time that was previously a total.
Own Id: OTP-18960

 Common_Test 1.26.1

 Fixed Bugs and Malfunctions

	Fix how CT finds Erlang/OTP releases for compatability testing. This functionality is only used to test Erlang/OTP.
Own Id: OTP-18932

 Common_Test 1.26

 Fixed Bugs and Malfunctions

	With this change, common_test returns an error when suite with a badly defined
group is executed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18728 Aux Id: PR-7487, PR-7674

	With this change, stylesheet option is applied to all HTML report pages.
Own Id: OTP-18760

	Update all <tt> html tags to be <code> instead.
Own Id: OTP-18799 Aux Id: PR-7695

 Improvements and New Features

	This change fixes docs, so that historically deprecated ?config macro is no
longer recommended to be used.
Own Id: OTP-18858 Aux Id: PR-7825

 Common_Test 1.25.1

 Fixed Bugs and Malfunctions

	With this change, ct_hooks manual refers to CTH execution order section in
user guide.
Own Id: OTP-14480 Aux Id: ERIERL-43, OTP-11894, PR-7455

	With this change, Config data from pre_end_per_testcase hook is delivered to
post_end_per_testcase callback in case of testcase timetrap or linked process
crash.
Own Id: OTP-18579 Aux Id: GH-7119

	With this change, remaining references to not supported vts tool in ct_run are
removed (mainly relates to docs and ct_run help message).
Own Id: OTP-18615 Aux Id: PR-7234

	With this change, prompt search functionality in ct_telnet handles unicode
input.
Own Id: OTP-18664 Aux Id: ERIERL-959

	Expanded the documentation about how to use the standard_io,
standard_error and user I/O devices.
Added the types io:standard_io/0,
io:standard:error/0 and io:user/0.
Own Id: OTP-18676 Aux Id: PR-7473 GH-7459

 Common_Test 1.25

 Fixed Bugs and Malfunctions

	This change improves Common Test docs (CT hook example code) and adds Emacs
skeleton with hook code.
Own Id: OTP-18377 Aux Id: PR-6437

 Improvements and New Features

	Updated common_test with a more robust way to fetch old releases, while
ignoring the current release.
Own Id: OTP-18259 Aux Id: PR-5924

	- re-write the XML ct module documentation into erlang types to make
Dialyzer able to catch more precise errors
Own Id: OTP-18340

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

 Common_Test 1.24.0.3

 Fixed Bugs and Malfunctions

	With this change, the last column in common_test testcase log file is modified to now show the total sum of each time in the table rows, and Elapsed Time which is a clock time spent to run above functions. The Elapsed Time is the same time that was previously a total.
Own Id: OTP-18960

 Common_Test 1.24.0.2

 Fixed Bugs and Malfunctions

	Fix how CT finds Erlang/OTP releases for compatability testing. This functionality is only used to test Erlang/OTP.
Own Id: OTP-18932

 Common_Test 1.24.0.1

 Fixed Bugs and Malfunctions

	With this change, prompt search functionality in ct_telnet handles unicode
input.
Own Id: OTP-18664 Aux Id: ERIERL-959

 Common_Test 1.24

 Improvements and New Features

	Renamed undocumented macro CT_PEER/3 to CT_PEER_REL/3.
Own Id: OTP-18460

 Common_Test 1.23.3

 Fixed Bugs and Malfunctions

	Change timeout to infinity for gen_server calls in cth_log_redirect
Own Id: OTP-18363 Aux Id: ERIERL-879

 Common_Test 1.23.2

 Fixed Bugs and Malfunctions

	Fix starting of peer nodes on old releases when the compile server was active
and the current Erlang installation contained non-latin1 characters in its
path.
Own Id: OTP-18255 Aux Id: PR-6314

 Common_Test 1.23.1

 Fixed Bugs and Malfunctions

	Fix cth_surefire to handle when a suite is not compiled with debug_info.
This bug has been present since Erlang/OTP 25.0.
Own Id: OTP-18208 Aux Id: ERIERL-852 PR-6229

 Improvements and New Features

	Common Test now preserves stack traces for throws.
Own Id: OTP-18138 Aux Id: GH-5719, PR-6029

 Common_Test 1.23

 Fixed Bugs and Malfunctions

	Fix bug when running parallel test cases and together with one or more ct
hooks that would cause the hook lock process to crash and produce printouts in
the ct logs.
Own Id: OTP-17881 Aux Id: PR-5581

 Improvements and New Features

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Remove unused and undocumented tracer node functionality.
Own Id: OTP-17676 Aux Id: PR-5021

	The new module peer supersedes the slave module. The slave module is now
deprecated and will be removed in OTP 27.
peer contains an extended and more robust API for starting erlang nodes.
Own Id: OTP-17720 Aux Id: PR-5162

	The cth_surefire ct hook has been updated to include the file and line number
of the executed test case in the xml output.
The performance of the hook has also been improved greatly for test runs with
many test cases.
Own Id: OTP-17882 Aux Id: PR-5581

 Common_Test 1.22.1.3

 Fixed Bugs and Malfunctions

	With this change, the last column in common_test testcase log file is modified to now show the total sum of each time in the table rows, and Elapsed Time which is a clock time spent to run above functions. The Elapsed Time is the same time that was previously a total.
Own Id: OTP-18960

 Common_Test 1.22.1.2

 Fixed Bugs and Malfunctions

	Fix how CT finds Erlang/OTP releases for compatability testing. This functionality is only used to test Erlang/OTP.
Own Id: OTP-18932

 Common_Test 1.22.1.1

 Fixed Bugs and Malfunctions

	Change timeout to infinity for gen_server calls in cth_log_redirect
Own Id: OTP-18363 Aux Id: ERIERL-879

 Common_Test 1.22.1

 Fixed Bugs and Malfunctions

	OTP internal test fix.
Own Id: OTP-17888

 Common_Test 1.22

 Improvements and New Features

	Before this change, group handling grammar was ambiguous and also group paths
did not support test specs.
Own Id: OTP-17664 Aux Id: GH-5088, PR-5242

	Before this change, it was not possible to link to a particular header entry
in Common Test log. Change adds right aligned anchor icons in HTML test logs.
Own Id: OTP-17790 Aux Id: PR-5375

 Common_Test 1.21

 Improvements and New Features

	Float allowed as multiply_timetraps parameter.
Own Id: OTP-17413 Aux Id: PR-4767

	Remove usage of legacy API macro and functions.
Own Id: OTP-17632 Aux Id: PR-5022

 Common_Test 1.20.5

 Fixed Bugs and Malfunctions

	An incoming NETCONF notification received before a call to
ct_netconfc:create_subscription/* caused the connection process to fail with
badarg. Unexpected notifications are now logged in the same way as other
unexpected messages.
Own Id: OTP-17506

 Improvements and New Features

	Add 'receiver' option to ct_netconfc
To allow a destination for incoming NETCONF notifications to be specified at
sessions creation. Previously, a caller of create_subscription/* became the
destination, but RFC 5277 create-subscription is no longer the only way in
which NETCONF notifications can be ordered.
Own Id: OTP-17509

 Common_Test 1.20.4

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Common_Test 1.20.3

 Fixed Bugs and Malfunctions

	The option release_shell could crash when used together with the spec
option.
Own Id: OTP-16940 Aux Id: ERL-1335

 Improvements and New Features

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

 Common_Test 1.20.2.3

 Fixed Bugs and Malfunctions

	OTP internal test fix.
Own Id: OTP-17888

 Common_Test 1.20.2.2

 Fixed Bugs and Malfunctions

	An incoming NETCONF notification received before a call to
ct_netconfc:create_subscription/* caused the connection process to fail with
badarg. Unexpected notifications are now logged in the same way as other
unexpected messages.
Own Id: OTP-17506

 Improvements and New Features

	Add 'receiver' option to ct_netconfc
To allow a destination for incoming NETCONF notifications to be specified at
sessions creation. Previously, a caller of create_subscription/* became the
destination, but RFC 5277 create-subscription is no longer the only way in
which NETCONF notifications can be ordered.
Own Id: OTP-17509

 Common_Test 1.20.2.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Common_Test 1.20.2

 Fixed Bugs and Malfunctions

	Before this change Config leaked between test groups in case of a subgroup was
skipped (GH-3480).
Own Id: OTP-17347 Aux Id: GH-3480,ERL-1439

 Common_Test 1.20.1

 Fixed Bugs and Malfunctions

	A race condition could cause ctnetconfc:open/ to return a dysfunctional
handle, resulting in errors when invoking other api functions on it, and
making it impossible to establish a new connection to the server in question.
Similar symptoms were possible with open/_ in modules ct_ssh and ct_telnet.
Internal messages from common_test processes could be left in the caller's
message queue after a timeout when invoking call/* in modules ct_netconfc and
ct_ssh. An internal process used by module ct_telnet could leak memory due to
stray messages.
Calls to ct_telnet:open/* and ct_telnet:get_data/1 could hang indefinitely if
the TCP connection to the server was lost.
Own Id: OTP-17328 Aux Id: ERIERL-631

 Common_Test 1.20

 Improvements and New Features

	Various address sanitizer support.
Own Id: OTP-16959 Aux Id: PR-2965

 Common_Test 1.19.1

 Improvements and New Features

	Add behaviour for test suites
Own Id: OTP-17070

 Common_Test 1.19

 Improvements and New Features

	The function ct_property_test:init_tool/1 is added for the cases when the
user does not want ct_property_test to compile properties. init_tool/1 can be
used to set the property_test_tool config value.
Own Id: OTP-16029 Aux Id: PR-2145

	The built-in Common Test Hook, cth_log_redirect, has been updated to use the
system default Logger handler's configuration instead of its own. See the
section on Built-in Hooks in the Common
Test User's Guide.
Own Id: OTP-16273

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

 Common_Test 1.18.2.2

 Fixed Bugs and Malfunctions

	OTP internal test fix.
Own Id: OTP-17888

 Common_Test 1.18.2.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Common_Test 1.18.2

 Improvements and New Features

	Document incl_apps cover option
Own Id: OTP-16039 Aux Id: ERL-795

	The ct_property_test has now a report function for results of stateful
testing.
Own Id: OTP-16340

	Don't hide error reasons from user
Own Id: OTP-16364 Aux Id: PR-2480

 Common_Test 1.18.1

 Improvements and New Features

	The ct_property_test logging is improved.
Own Id: OTP-16287

 Common_Test 1.18

 Fixed Bugs and Malfunctions

	If a ct hook is installed in the suite/0 function in a test suite, then the
hook's terminate/1 function would be called several times without it's
init/2 function being called first. This is now corrected.
Own Id: OTP-15863 Aux Id: ERIERL-370

	If init_per_testcase fails, the test itself is skipped. According to the
documentation, it should be possible to change the result to failed in a hook
function. The only available hook function in this case is
post_init_per_testcase, but changing the return value there did not affect
the test case result. This is now corrected.
Own Id: OTP-15869 Aux Id: ERIERL-350

 Improvements and New Features

	Add ct_netconfc support for NETCONF 1.1 (RFC 6241). The 1.1 base capability
can be sent in hello, and RFC 6242 chunk framing is applied when both client
and server advertise 1.1 support.
Own Id: OTP-15789

	Correct lib_dir paths in common_tests opaque data structure that is passed to
ct_release_test callback modules in functions upgrade_init/2,
upgrade_upgraded/2 and upgrade_downgraded/2. The incorrect paths may cause
confusion when debugging although it will not cause any incorrect behavior on
the part of common_test as it is currently not used.
Own Id: OTP-15934

 Common_Test 1.17.3

 Fixed Bugs and Malfunctions

	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

 Improvements and New Features

	Use ssh instead of rsh as the default remote shell.
Own Id: OTP-15633 Aux Id: PR-1787

 Common_Test 1.17.2.1

 Fixed Bugs and Malfunctions

	If a ct hook is installed in the suite/0 function in a test suite, then the
hook's terminate/1 function would be called several times without it's
init/2 function being called first. This is now corrected.
Own Id: OTP-15863 Aux Id: ERIERL-370

	If init_per_testcase fails, the test itself is skipped. According to the
documentation, it should be possible to change the result to failed in a hook
function. The only available hook function in this case is
post_init_per_testcase, but changing the return value there did not affect
the test case result. This is now corrected.
Own Id: OTP-15869 Aux Id: ERIERL-350

 Common_Test 1.17.2

 Fixed Bugs and Malfunctions

	The test result when a hook function fails is in general the same as if the
function that the hook is associated with fails. For example, if
post_init_per_testcase fails the result is that the test case is skipped, as
is the case when init_per_testcase fails.This, however, was earlier not true
for timetrap timeouts or other error situations where the process running the
hook function was killed. This is now corrected, so the error handling should
be the same no matter how the hook function fails.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15717 Aux Id: ERIERL-334

	In some rare cases, when two common_test nodes used the same log directory, a
timing problem could occur which caused common_test to crash because it's log
cache file was unexpectedly empty. This is now corrected.
Own Id: OTP-15758 Aux Id: ERIERL-342

 Improvements and New Features

	Two new common_test hook functions are introduced:
post_groups/2, which is called after Suite:groups/0
post_all/3, which is called after Suite:all/0
These functions allow modifying the return values from the groups/0 and
all/0 functions, respectively.
A new term, {testcase,TestCase,RepeatProperties} is now also allowed in the
return from all/0. This can be used for repeating a single test case a
specific number of times, or until it fails or succeeds once.
Own Id: OTP-14746 Aux Id: ERIERL-143

 Common_Test 1.17.1

 Improvements and New Features

	OTP internal test improvements.
Own Id: OTP-15716

 Common_Test 1.17

 Fixed Bugs and Malfunctions

	A bug caused ct:encrypt_config_file/3 and ct:decrypt_config_file/3 to fail
with badmatch if input parameter KeyOrFile was {key,string()}. This is
now corrected.
Own Id: OTP-15540

	The status of a test case which failed with timetrap timeout in
end_per_testcase could not be modified by returning {fail,Reason} from a
post_end_per_testcase hook function. This is now corrected.
Own Id: OTP-15584 Aux Id: ERIERL-282

 Improvements and New Features

	A new variant of the newline option to ct_telnet:cmd/3 and
ct_telnet:send/3 is added, which allows to specify a string to append as
newline indicator on a command. By default, the value is "\n", but in some
cases it is required to be "\r\n", which this option allows.
A faulty regular expression given as parameter to ct_telnet:expect/2,3 would
earlier crash and look like an internal error in common_test. A better error
indication is now given, but the test case will still fail.
Own Id: OTP-15229 Aux Id: ERIERL-203

	Since the yang RFC allows more than one top element of config data in an
edit-config element, ct_netconfc:edit_config/3,4,5 can now take a list of
XML elements.
Own Id: OTP-15298

 Common_Test 1.16.1

 Fixed Bugs and Malfunctions

	The Logger handler cth_log_redirect earlier called the report callback
(report_cb) before calling the logger formatter. In some cases this would
fail, since cth_log_redirect could not handle report callbacks with two
arguments. This is now corrected, so only the formatter will call the report
callback.
Own Id: OTP-15307

 Common_Test 1.16

 Improvements and New Features

	Use the compiler option nowarn_export_all to disable export_all warnings
when automatically compiling test suites.
Own Id: OTP-14810

	Use uri_string module instead of http_uri.
Own Id: OTP-14902

 Common_Test 1.15.4.4

 Improvements and New Features

	The ct_property_test logging is improved.
Own Id: OTP-16287

 Common_Test 1.15.4.3

 Fixed Bugs and Malfunctions

	If a ct hook is installed in the suite/0 function in a test suite, then the
hook's terminate/1 function would be called several times without it's
init/2 function being called first. This is now corrected.
Own Id: OTP-15863 Aux Id: ERIERL-370

	If init_per_testcase fails, the test itself is skipped. According to the
documentation, it should be possible to change the result to failed in a hook
function. The only available hook function in this case is
post_init_per_testcase, but changing the return value there did not affect
the test case result. This is now corrected.
Own Id: OTP-15869 Aux Id: ERIERL-350

 Common_Test 1.15.4.2

 Fixed Bugs and Malfunctions

	The test result when a hook function fails is in general the same as if the
function that the hook is associated with fails. For example, if
post_init_per_testcase fails the result is that the test case is skipped, as
is the case when init_per_testcase fails.This, however, was earlier not true
for timetrap timeouts or other error situations where the process running the
hook function was killed. This is now corrected, so the error handling should
be the same no matter how the hook function fails.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15717 Aux Id: ERIERL-334

	In some rare cases, when two common_test nodes used the same log directory, a
timing problem could occur which caused common_test to crash because it's log
cache file was unexpectedly empty. This is now corrected.
Own Id: OTP-15758 Aux Id: ERIERL-342

 Improvements and New Features

	Two new common_test hook functions are introduced:
post_groups/2, which is called after Suite:groups/0
post_all/3, which is called after Suite:all/0
These functions allow modifying the return values from the groups/0 and
all/0 functions, respectively.
A new term, {testcase,TestCase,RepeatProperties} is now also allowed in the
return from all/0. This can be used for repeating a single test case a
specific number of times, or until it fails or succeeds once.
Own Id: OTP-14746 Aux Id: ERIERL-143

	OTP internal test improvements.
Own Id: OTP-15716

 Common_Test 1.15.4.1

 Fixed Bugs and Malfunctions

	The status of a test case which failed with timetrap timeout in
end_per_testcase could not be modified by returning {fail,Reason} from a
post_end_per_testcase hook function. This is now corrected.
Own Id: OTP-15584 Aux Id: ERIERL-282

 Common_Test 1.15.4.0.1

 Fixed Bugs and Malfunctions

	The status of a test case which failed with timetrap timeout in
end_per_testcase could not be modified by returning {fail,Reason} from a
post_end_per_testcase hook function. This is now corrected.
Own Id: OTP-15584 Aux Id: ERIERL-282

 Common_Test 1.15.4

 Fixed Bugs and Malfunctions

	Fixed problem with 'skip_groups' in combination with 'all suites' option in
test specification.
Own Id: OTP-14953

 Common_Test 1.15.3

 Improvements and New Features

	A new function, ct:remaining_test_procs/0, returns the identity of test- and
group leader processes that are still running at the time of the call.
Own Id: OTP-13832

	A "latest test result" link is now displayed in the footer of each test index
page, which performs a jump to the most recently generated test index. This is
useful for making quick comparisons of results between test runs without
having to traverse the log file tree.
Own Id: OTP-14281

 Common_Test 1.15.2

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

 Common_Test 1.15.1

 Fixed Bugs and Malfunctions

	In OTP-20.0, the behavior of c, make, and ct_make was changed so that in some
cases the beam files by default would be written to the directory where the
source files were found. This is now changed back to the old behavior so beam
files are by default written to current directory.
Own Id: OTP-14489 Aux Id: ERL-438

 Common_Test 1.15

 Fixed Bugs and Malfunctions

	Errors in the documentation for user HTML stylesheets have been corrected.
Own Id: OTP-14332 Aux Id: seq13299

	Internal code change: Calls to catch followed by a call to
erlang:get_stacktrace/0 has been rewritten to use try instead of catch
to make the code future-proof.
Own Id: OTP-14400

 Improvements and New Features

	The ct_slave modules now handle nodenames in the same way as nodenames
passed to -sname. That means ct_slave:start('b@127.0.0.1'). will now work.
Own Id: OTP-13806

	Added the new option, keep_logs. If setting the value for this option to an
integer, N, common_test will remove all ct_run.* directories in the current
log directory, except the N newest.
Own Id: OTP-14179

	The existing ct_netconfc:open/1,2 opens an SSH connection with one SSH
channel realizing one Netconf session. To allow testing of multiple sessions
over the same SSH connection, the following functions are added to
ct_netconfc:
* connect/1,2 - establish an SSH connection disconnect/1 - close the
given SSH connection session/1,2,3 - open an ssh channel on the given
connection and send 'hello' to start a Netconf session
Own Id: OTP-14284

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

	The function ct_ssh:shell/2,3 is added.
Own Id: OTP-14415 Aux Id: seq13315

 Common_Test 1.14

 Fixed Bugs and Malfunctions

	The following corrections and improvements are done in the common_test hook
handling:
	An extra argument, Suite, is added as the first argument to each of the
following hook callback functions:
	pre_init_per_group
	post_init_per_group
	pre_end_per_group
	post_end_per_group
	pre_init_per_testcase
	post_init_per_testcase
	pre_end_per_testcase
	post_end_per_testcase
	on_tc_fail
	on_tc_skip

For backwards compatibility, if the new function is not exported from a hook
callback module, common_test will fall back to the old interface and call
the function without the Suite argument.

	If either init_per_suite or end_per_suite exists, but not the other,
then the non-existing function will be reported as failed with reason
undef in the test log. The same goes for init/end_per_group. This has
always been a requirement according to the user's guide, but now
common_test is more explicit in the report.

	If init_per_suite was exported from a test suite, but not end_per_suite,
then pre/post_end_per_suite was called with Suite=ct_framework instead
of the correct suite name. This is now corrected.

	If end_per_group was exported from a suite, but not init_per_group, then
end_per_group was never called. This is now corrected.

	Tests that were skipped before calling pre_init_per_* got faulty calls to
the corresponding post_init_per_*. E.g. if a test was skipped because
suite/0 failed, then post_init_per_suite would be called even though
pre_init_per_suite and init_per_suite were not called. This is now
corrected so a post_* callback will never be called unless the
corresponding pre_* callback has been called first.

	Tests that were skipped before or in init_per_testcase got faulty calls to
pre_end_per_testcase and post_end_per_testcase. This is now corrected so
pre/post_end_per_testcase are not called when end_per_testcase is not
called.

	If an exit signal causes the test case process to die while running
init_per_testcase, the case was earlier reported as failed with reason
{skip,...}. This is now corrected so the case will be marked as skipped.

	If an exist signal causes the test case process to die while running
end_per_testcase, the case was earlier marked as failed. This is now
corrected so the status of the test case is not changed - there is only a
warning added to the comment field.

	If a test case was skipped because of option {force_stop,skip_rest} or
because of a failed sequence, then no tc_start event would be sent, only
tc_done. This is now corrected so both events are sent.

	When skipping or failing in a configuration function, the configuration
function itself would get {auto_skipped,Reason}, {skipped,Reason} or
{failed,Reason} in the hook callbacks on_tc_skip or on_tc_fail. The
other test cases that were skipped as a result of this would only get
Reason in on_tc_skip. This is now corrected so even the configuration
function that caused the skip/fail will only get Reason in the hook
callback.

Own Id: OTP-10599 Aux Id: kunagi-344 [255]

	When a test case was skipped by a skip_cases statement in a test spec, then
cth_surefire would erroneously mark the previous test case as skipped in the
xml report. The actually skipped test case would not be present in the xml
report at all. This is now corrected.
Own Id: OTP-14129 Aux Id: seq13244

	The multiply_timetraps and scale_timetraps options did not work with test
specifications, which has been corrected.
Own Id: OTP-14210

 Improvements and New Features

	ct_testspec:get_tests/1 is added. This is used by rebar3 to get all
directories that must be compiled when running tests from testspec - instead
of implementing testspec parsing in rebar3.
Own Id: OTP-14132

 Common_Test 1.13

 Fixed Bugs and Malfunctions

	Some types of printouts to screen during test runs (including
ct:print/1,2,3,4) used the local user process as IO device and these
printouts would not be visible when e.g. running tests via a shell on a remote
node. A default Common Test group leader process has been introduced to solve
the problem. This process routes printouts to the group leader of the starting
process, if available, otherwise to user.
Own Id: OTP-13973 Aux Id: ERL-279

	Some Common Test processes, that act as I/O group leaders for test cases,
would not terminate as expected at the end of test runs. This error has been
corrected.
Own Id: OTP-14026 Aux Id: ERL-287

	The logging verbosity feature was incorrectly documented. The default
verbosity levels for test runs is e.g. not 50 (?STD_VERBOSITY), but 100
(?MAX_VERBOSITY). Also, some of the examples had errors and flaws. The
corresponding chapter (5.18) in the User's Guide has been updated.
Own Id: OTP-14044 Aux Id: seq13223

 Improvements and New Features

	A feature to let the user specify headings to log printouts has been added.
The heading is specified as {heading,string()} in the Opts list argument
to ct:pal/3,4,5, ct:print/3,4,5, or ct:log/3,4,5. If the heading option
is omitted, the category name, or "User", is used as the heading instead.
Own Id: OTP-14043 Aux Id: seq13226

 Common_Test 1.12.3

 Fixed Bugs and Malfunctions

	If the telnet server would pause during transmission of a line of text before
terminating the line, the ct_telnet:expect/3 function would print the line
twice in the test case HTML log. This problem has been fixed.
Own Id: OTP-13730 Aux Id: seq13135

	The functions ct:set_verbosity/2 and ct:get_verbosity/1 have been added in
order to make it possible for test cases, CT Hooks, or test framework
functions, to modify and read verbosity levels for logging.
Own Id: OTP-13841

	make (tools) and ct_make (common_test) would crash if an Erlang source
file contained a -warning() directive.
Own Id: OTP-13855

 Common_Test 1.12.2

 Fixed Bugs and Malfunctions

	The following modules were missing in common_test.app.src: ct_groups,
ct_property_test, ct_release_test, ct_webtool, ct_webtool_sup, test_server_gl.
They have now been added.
Own Id: OTP-13475

	Common Test printed incorrect timestamps for received error reports.
Own Id: OTP-13615 Aux Id: seq13124

 Common_Test 1.12.1

 Fixed Bugs and Malfunctions

	The nodelay option used to be enabled (true) by default for sockets opened
by the Common Test telnet client. This appeared to cause communication
problems with telnet servers on some systems, and therefore the option is no
longer used. Its value may instead be specified in the telnet connection
settings. See the man page for ct_telnet for details. Please note that the
interface function connect in unix_telnet has been updated with an extra
argument and is now unix_telnet:connect/7.
Own Id: OTP-13462 Aux Id: seq13077

	Fix bug in cth_surefire: When a pre_init_per_suite hook fails before reaching
the cth_surefire:pre_init_per_suite, cth_surefire produced incorrect XML.
Own Id: OTP-13513

	The ct:get_timetrap_info/0 function has been updated to return more
information about timetrap scaling.
Own Id: OTP-13535

	A problem with stylesheet HTML tags getting incorrectly escaped by Common Test
has been corrected.
Own Id: OTP-13536

	The ct_run start flag -no_esc_chars and ct:run_test/1 start option
{esc_chars,Bool} have been introduced to make it possible to disable
automatic escaping of characters. Automatic escaping of special HTML
characters printed with io:format/1,2 and ct:pal/1,2,3,4 was introduced in
Common Test 1.12. The new flag/option may be used to disable this feature for
backwards compatibility reasons. (The option is also supported in test
specifications).
Own Id: OTP-13537

 Common_Test 1.12

 Fixed Bugs and Malfunctions

	This update fixes the problem with generic printouts in the html log file not
having special characters escaped. Printouts made with io:format/2 and
ct:pal/2 will now get special characters escaped automatically. Common Test
will not attempt to escape characters printed with ct:log/2 since it is
assumed that the user may want to print html tagged data using this function.
A new function, ct:log/5, has been added, which offers optional escaping of
characters. The latter function may also be used to print text to the log
without headers and CSS class wrapping (analogue to io:format/2).
Own Id: OTP-13003 Aux Id: seq13005

	Commit 4cf832f1ad163f5b25dd8a6f2d314c169c23c82f erroneously removed logging of
open and close of netconf connections. This is now corrected.
Own Id: OTP-13386

	The directory to which nodes started with test_server:start_node/3 writes
their erl_crash.dump is changed. The crashdumps were earlier written to the
directory of test_server.beam, but in later versions of Microsoft Windows this
is no longer writable (even for administrators). The framework (common_test)
log directory is now used instead.
Own Id: OTP-13388

 Improvements and New Features

	This update makes it possible to specify multiple instances of the same group
or test case in one test specification term in order to repeat execution.
Example:
{groups, "./", my_SUITE, [my_group, my_group], {cases, all}}, or {cases, "./", my_SUITE, [my_tc, my_tc, my_tc]}.
Own Id: OTP-13241 Aux Id: seq12979

	Two new CT hook functions have been added: post_init_per_testcase/4 and
pre_end_per_testcase/3. With these hook functions, it is possible to perform
arbitrary actions (including modifications of test execution, test state and
results) immediately before and after the execution of the test case.
Own Id: OTP-13242 Aux Id: seq12991

	The ct_netconfc was earlier very restrictive as to which SSH options the
user could set. This is now changed, and any SSH option is now allowed. The
netconf client will simply pass on any option, which it does not recognize, to
SSH.
Own Id: OTP-13338 Aux Id: seq13053,seq13069

 Common_Test 1.11.2

 Fixed Bugs and Malfunctions

	If a ssh package contained more than one netconf end tag, then the second end
tag was never detected in ct_netconfc:handle_data. Instead it was included in
the XML data given to the xmerl parser, which then failed. The problem was
introduced by OTP-13007, and has now been corrected.
Own Id: OTP-13323

 Common_Test 1.11.1

 Fixed Bugs and Malfunctions

	When data from the netconf server was split into many ssh packages, the
netconf client performed really bad. This is now improved.
Own Id: OTP-13007

	In ct_netconfc, if a timer expired 'at the same time' as the server sent the
rpc-reply, the timeout message might already be in the client's message queue
when the client removed the timer ref from its 'pending' list. This caused a
crash in the client since the timer ref could no longer be found when handling
the timeout message. This problem is now fixed by always flushing the timeout
message from the message queue when canceling a timer.
Own Id: OTP-13008

	The error logger handler ct_conn_log_h did not respect the 'silent' option,
and tried to print to an undefined file descriptor. This has been corrected.
Own Id: OTP-13035

	If the user would let the test run proceed after test suite compilation
failure, Common Test did not set the exit status to indicate failure as
expected. This has been corrected. Also, the 'abort_if_missing_suites' option
now makes Common Test abort the test run without asking the user if
compilation fails, even if access to stdin/stdout exists.
Own Id: OTP-13173 Aux Id: seq12978

	With the Common Test 'create_priv_dir' start option set to 'auto_per_tc', the
name of the priv directory for a configuration function could clash with the
name of the priv directory for a test case, which would cause Test Server
failure. This error has been corrected.
Own Id: OTP-13181

 Common_Test 1.11

 Fixed Bugs and Malfunctions

	The status of an aborted test due to test suite compilation error has changed
from 'auto_skipped' to 'failed'. This affects both the textual log file, event
handling and CT hook callbacks. The logging of compilation failures has also
been improved, especially in the case of multiple test suites failing
compilation.
Own Id: OTP-10816

	The Test Server source code parser (erl2html2) failed to handle the macro
tuple in the syntax tree returned by epp_dodger. This error has been
corrected.
Own Id: OTP-12740

	New options to make it possible to specify ssh_port in a .spec file:
[{node_start, [{ssh_port, 9999}]}].
And also to specify additional ssh options like paths to public-key files:
[{node_start, [{ssh_opts, [{user_dir, "/home/shrek/e2/"}]}]}].
Own Id: OTP-12809

 Improvements and New Features

	Earlier there was no way to add optional parameters like default-operation to
an edit-config request sent with ct_netconfc:edit_config/3,4, you had to use
ct_netconfc:send_rpc/2,3. For simplicity and completion, a new optional
argument, OptParams, is now added to the edit_config function.
Own Id: OTP-10446 Aux Id: kunagi-266 [177]

	When running OTP tests using the ts interface, it is now possible to specify
so called test categories per OTP application. A test category is represented
by a CT test specification and defines an arbitrary subset of existing test
suites, groups and cases. Examples of test categories are 'smoke' (smoke
tests) and 'bench' (benchmarks). (Call ts:help() for more info). Also,
functions for reading terms from the current test specification during test,
ct:get_testspec_terms/0 and ct:get_testspec_terms/1, have been implemented.
Own Id: OTP-11962

	Obsolete scripts and make file operations have been removed and the
installation chapter in the Common Test User's Guide has been updated.
Own Id: OTP-12421

	The 'keep_alive' interval has been reduced to 8 seconds, which is two seconds
shorter than the default 'idle_timeout' value for ct_telnet:expect/3. This
way, the telnet server receives a NOP message (which might trigger an action)
before the operation times out. Also the TCP option 'nodelay' has been enabled
per default for all telnet connections, in order to reduce the risk for
communication timeouts.
Own Id: OTP-12678 Aux Id: seq12818

	When the ct_run program is executed without any flags, "-dir ." is now used as
default start flag. Similarly, the option {dir,"."} is used by ct:run_test/1
if called with an empty list. Also, the help text (ct_run -help) has been
updated, as well as the Running Tests chapter in the Common Test User's Guide.
Own Id: OTP-12684 Aux Id: seq12865

 Common_Test 1.10.1

 Fixed Bugs and Malfunctions

	A fault in the Common Test logger process, that caused the application to
crash when running on a long name node, has been corrected.
Own Id: OTP-12643

	A 'wait_for_prompt' option in ct_telnet:expect/3 has been introduced which
forces the function to not return until a prompt string has been received,
even if other expect patterns have already been found.
Own Id: OTP-12688 Aux Id: seq12818

	If the last expression in a test case causes a timetrap timeout, the stack
trace is ignored and not printed to the test case log file. This happens
because the {Suite,TestCase,Line} info is not available in the stack trace
in this scenario, due to tail call elimination. Common Test has been modified
to handle this situation by inserting a {Suite,TestCase,last_expr} tuple in
the correct place and printing the stack trace as expected.
Own Id: OTP-12697 Aux Id: seq12848

	Fixed a buffer problem in ct_netconfc which could cause that some messages
where buffered forever.
Own Id: OTP-12698 Aux Id: seq12844

	The VTS mode in Common Test has been modified to use a private version of the
Webtool application (ct_webtool).
Own Id: OTP-12704 Aux Id: OTP-10922

	Add possibility to add user capabilities in ct_netconfc:hello/3.
Own Id: OTP-12707 Aux Id: seq12846

 Common_Test 1.10

 Fixed Bugs and Malfunctions

	The tests overview file, index.html, did not always get updated correctly
after a new test run. This was because of a bug in the Common Test log cache
mechanism which has now been corrected.
Own Id: OTP-11400

	When a successful test case returns, Common Test should, according to the
documentation, send a tc_done event to the event handlers with Result = ok in
the data field. However, Common Test sets Result to the return value of the
test case instead. Common Test has been modified now to comply with the
documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12279 Aux Id: seq12737, OTP-12531

	A ct_telnet:expect/3 call could never be aborted before an idle_timeout, even
if total_timeout had been set to a lower value (i.e. a shorter time). This
problem has been fixed.
Own Id: OTP-12335

	The undocumented return value {skipped,Reason} from config functions and
test cases was handled inconsistently. Test cases were e.g. reported as
"skipped" to CT Hook functions, but "successful" to event handlers. Now, the
above return value is consistently handled the same way as {skip,Reason} and
this has also been documented.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12359 Aux Id: seq12760

	The Erlang source code to HTML generator would sometimes fail because
epp:parse_erl_form/1 could not find and expand required macros in included
header files. The problem has been solved by making sure common_test always
passes the full include path to epp. Also, a bug that could cause
erl_syntax:revert/1 to fail because of a badly formed syntax tree has been
corrected.
Own Id: OTP-12419

	A missing group option in the ct_run help text has been added.
Own Id: OTP-12433 Aux Id: seq12788

	Printouts by means of ct:log/2/3 or ct:pal/2/3 from the hook functions
on_tc_fail/2 and on_tc_skip/2 would (quite unexpectedly) end up in the
"unexpected i/o" log file instead of in the test case log file. This behaviour
has been changed so that now, all printouts (including stdio printouts) from
these hook functions will be routed to the test case log file.
Own Id: OTP-12468

	ct_netconfc:action/3 will now - if the return type is void - accept an RPC
reply on the form {ok,[simple_xml()]}, and in this event return only the
atom ok.
Own Id: OTP-12491 Aux Id: seq12797

	OTP-11971 erroneously changed the handling of relative paths for incl_dirs
specified in the cover spec file. This is now corrected so these are expected
to be relative to the directory where the cover spec file itself is stored
Own Id: OTP-12498 Aux Id: OTP-11971

	Some test cases have been updated to use ct:sleep/1 instead of timer:sleep/1.
The reason being that the sleep times need to be scaled to compensate for slow
execution (e.g. when cover is running).
Own Id: OTP-12574

 Improvements and New Features

	Common Test now exports a function, ct:get_event_mgr_ref/0, that returns the
name of the Common Test event manager. This makes it possible to plug in event
handlers to the event manager while tests are running (using the gen_event
API).
Own Id: OTP-12506 Aux Id: seq12802

	When a test case (or configuration function) fails because of an exit signal
from a linked process, Common Test previously passed only the reason for
process termination to the CT post hook functions and the event handlers (in
the tc_done event). This has been changed so that now the tuple
{'EXIT',ReasonForProcessTermination} is passed instead. This makes it much
easier in the CT post hook functions to distinguish a failure of this sort
from other types of errors and from the return value of a successful test
case.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12531 Aux Id: OTP-12279

	A new feature has been introduced in ct_telnet:get_data/1 that makes it
possible to automatically poll the telnet connection in case an incomplete
string (one that has not yet been terminated by a newline) remains in the
receive buffer. The polling is controlled by two new telnet config values,
which are documented in the ct_telnet reference manual. The polling mechanism
is disabled by default (making the get_data/1 function backwards compatible).
Own Id: OTP-12627

 Common_Test 1.9

 Fixed Bugs and Malfunctions

	The source code to html code generator in Test Server (and Common Test) would
fail to generate anchors in the html code for functions with non-expandable
macros, resulting in bad html links to such functions. This correction lets
the code generator ignore macros that can't be expanded (i.e. not pre-process
them), so that correct anchors will always be produced.
Own Id: OTP-11766 Aux Id: seq12556

	OTP-11971 erroneously changed the handling of relative paths (import/export
files) specified in the cover spec file. This is now corrected so these are
expected to be relative to the directory where the cover spec file itself is
stored.
Own Id: OTP-12031

	Common Test would sometimes crash while trying to print large amounts of SASL
reports to log on a computer with a slow file system. This problem (due to an
error in IO message buffering in ct_logs) has been fixed.
Own Id: OTP-12159

	The common_test telnet client, ct_telnet and friends, had some unstable test
cases. Some of these were caused by the unix_telnet callback sending an extra
newline after sending the password. This caused the sever to send an extra
prompt back which confused the tests. The extra newline is no longer sent.
Also, debug printouts and logging from the telnet client is improved, and some
test cases are slightly modified in order to stabilize the test.
Own Id: OTP-12329

	ct_netconfc did not expect the return value {error,timeout} from
ssh_connection:subsystem/4. This has been corrected.
Own Id: OTP-12334

 Improvements and New Features

	A new option, {newline,boolean()} is added to all functions in ct_telnet
that send data (command strings) to the telnet server. By default, ct_telnet
adds a newline to all command strings, and by setting the new option to
false this behavior is turned off.
Own Id: OTP-12252 Aux Id: seq12730

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

 Common_Test 1.8.2

 Fixed Bugs and Malfunctions

	Ticket OTP-11971 introduced a runtime dependency towards test_server-3.7.1,
since the interface between test_server and common_test was changed.
Erroneously, the common_test.app file was not updated according to this. This
has now been corrected.
Own Id: OTP-12037

 Improvements and New Features

	Warning: this is experimental and may disappear or change without previous
warning.
Experimental support for running Quickcheck and PropEr tests from common_test
suites is added to common_test. See the reference manual for the new module
ct_property_testing.
Experimental property tests are added under
lib/{inet,ssh}/test/property_test. They can be run directly or from the
commont_test suites inet/ftp_property_test_SUITE.erl and
ssh/test/ssh_property_test_SUITE.erl.
See the code in the test directories and the man page for details.
(Thanks to Tuncer Ayaz for a patch adding Triq)
Own Id: OTP-12119

 Common_Test 1.8.1

 Fixed Bugs and Malfunctions

	Substrings in long telnet messages would sometimes get wrongly reversed. This
error has been corrected.
Own Id: OTP-11871 Aux Id: seq12581

	The basic_html logging mode in Common Test (for compatibility with old
browsers) generated HTML code with unbalanced tags. This has been fixed.
Own Id: OTP-11917 Aux Id: seq12598

	The mechanism for running code cover analysis with common_test has been
improved. Earlier, if a test run consisted of multiple tests, cover would be
started and stopped for each test. This would give "intermediate" cover logs
available from the "Coverage log" link on the test suite result pages. To
accumulate cover data over all tests, the 'export' option had to be used in
the cover spec file. This was not well documented, and the functionality was
quite confusing.
Using the 'nodes' option in the cover spec file would fail when the test run
consisted of multiple tests, since the specified nodes would only be included
in the cover analysis of the first test.
The repeated compilation and analysis of the same modules was also very time
consuming.
To overcome these problems, ct will now only cover compile and analyze modules
once per test run, i.e. once for each cover spec file. The log file is
available via a new button on the top level index page. The old "Coverage log"
links on the test suite result pages still exist, but they all point to the
same log containing the accumulated result.
Own Id: OTP-11971

	If multiple tests would run simultaneously on different Erlang nodes, writing
their logs to the same directory, then there would often be entries in the
all_runs.html log file showing incomplete results (all zeroes) upon
completion. This problem was caused by a bug in the Common Test log cache
mechanism, which has been fixed.
Own Id: OTP-11988 Aux Id: seq12611

 Common_Test 1.8

 Fixed Bugs and Malfunctions

	The error generated if a test case process received an exit from a linked
process while executing init_per_testcase/2, was handled incorrectly by Common
Test. The problem has been solved, and Common Test now reports this type of
error correctly, with proper error reason and exit location as well.
Own Id: OTP-11643

	Running a parallel test case group with two or more instances of the same test
case would result in identical log file names, and one test case instance
would overwrite the log file of another. This problem has been solved.
Own Id: OTP-11644

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	The cth_surefire hook would crash in pre_init_per_suite/3 if a previous
hook returned {skip,Reason} or {fail,Reason} instead of a Config list.
This error has been corrected, and cth_surefire will now simply propagate
the received InitData value instead.
Own Id: OTP-11811

	Specs of return values are corrected for ct_netconfc:get/2,3,
ct_netconfc:get_config/3,4, ct_netconfc:action/2,3,
ct_netconfc:send_rpc/2,3 and ct_netconfc:send/2,3.
Own Id: OTP-11834 Aux Id: seq12574

 Improvements and New Features

	ct_telnet can now log all communication taking place during a telnet session.
Previously, only information about ct_telnet operations and commands, as well
as explicitly requested data from the server, was logged.
Furthermore, a logging mechanism based on an Error Logger event handler and a
dedicated Common Test hook, cth_conn_log, now makes it possible to print
data for individual connections to separate log files. Please see the
ct_telnet reference manual for more information and examples.
Important note: A new argument, ConnName has been added to the
unix_telnet:connect/5 callback function. This forces users that use private
ct_telnet callback modules to update their code according to
unix_telnet:connect/6. Please see the unix_telnet reference manual and
source code module for details.
Own Id: OTP-11440 Aux Id: seq12457

	A new timeout option has been introduced for the ct_telnet:expect/3
function. With {total_timeout,Time} it's possible to set a time limit for
the complete expect operation. After Time milliseconds, expect/3 returns
{error,timeout}. The default value used if total_timeout is not specified,
is infinity (i.e. no time limit). Please see the ct_telnet reference manual
for more information.
Own Id: OTP-11689

	Some function specs are corrected or moved and some edoc comments are
corrected in order to allow use of edoc. (Thanks to Pierre Fenoll)
Own Id: OTP-11702

	Test case group name information has been added to the data sent with
tc_user_skip and tc_auto_skip event messages, as well as the data passed
in calls to the CT Hook functions on_tc_skip/3 and on_tc_fail/3. The
modification only affects the function name element/argument. This value
remains an atom if the test case in question does not belong to a test case
group. Otherwise a tuple {FuncName,GroupName} ({atom(),atom()}) is passed
instead.
Note that this change may (depending on the patterns used for matching)
require modifications of user event handlers and hook modules. Please see the
Event Handling chapter in the Common Test User's Guide, and the reference
manual for ct_hooks, for details.
Note also that the Test Server framework callback function report/2 has been
modified. This change only affects users with test frameworks interfacing Test
Server rather than Common Test. See the test_server_ctrl reference manual
for details.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11732 Aux Id: seq12541

	If Common Test can't prompt the user to abort or continue the test run when
one or more test suites fail to compile, a new option,
{abort_if_missing_suites,Bool}, can be used to specify whether it should
proceed with the test run, or stop execution. The default value of Bool is
false (i.e. to proceed even if suites are missing).
Own Id: OTP-11769

 Known Bugs and Problems

	common_test: Fix problems reported by Dialyzer.
Own Id: OTP-11525

 Common_Test 1.7.4

 Fixed Bugs and Malfunctions

	Return values from group and testcase info functions are now properly checked,
and associated test cases are auto skipped if a return value is invalid.
Own Id: OTP-10631 Aux Id: kunagi-345 [256]

	The way Common Test handles skipping of test cases has been updated. In
previous versions, returning {skip,Reason} from a configuration function
(such as init_per_suite or init_per_group), resulted in all affected test
cases getting skipped with status auto_skipped. This was inappropriate,
since this status is supposed to be used to inform that Common Test has taken
the initiative to skip something (e.g. a test case group if init_per_group
failed). Therefore, in this version of Common Test, whenever the user skips a
suite, group, or individual test case (by means of a configuration function or
test specification term), the affected test cases get the status
user_skipped instead.
This update has meant a few changes that may affect Common Test users in
various ways:
	The test results and statistics will be affected, which is important to know
when running regression tests and comparing results to previous test runs.
	Users that read or parse the textual log file suite.log will notice that
an auto skipped function is now reported as auto_skipped rather than
skipped as before.
	When require fails in an info function (such as suite/0 or group/1), all
affected configuration functions and test cases are marked as
auto_skipped.
	If Common Test detects an error in the test suite (such as e.g. an invalid
all/0 function), all affected configuration functions and test cases are
marked as auto_skipped.
	If a repeated test run session reaches a deadline with force_stop enabled,
all remaining test cases are marked as auto_skipped rather than
user_skipped as before.
	The event messages that Common Test generates during test runs have been
affected by this update. For details see OTP-11524.

Own Id: OTP-11305 Aux Id: OTP-11524

	Returning {skip, Reason} from a pre_end_per_group/3 user hook function would
result in an exit in the Common Test cth_log_redirect hook. This problem has
been solved.
Own Id: OTP-11409 Aux Id: seq12446

	When the netconf server did not respond to the close-session request, the call
to ct_netconfc:close_session/2 would hang forever waiting for the netconf
client to terminate. This has been corrected. The client will now always
terminate (and take down the connection) if the close-session request times
out.
Own Id: OTP-11478

 Improvements and New Features

	Fix cth_log_redirect.erl to fulfill gen_event behaviour. Thanks to Roberto
Aloi.
Own Id: OTP-11401

	The first argument of the CT hook callback function on_tc_skip/3 has been
modified. When this function is called for init_per_group or
end_per_group, the value of the first argument is now
{init_per_group,GroupName} or {end_per_group,GroupName}.
Own Id: OTP-11523

	The following modifications have been made to the event messages that Common
Test sends during test execution:
	For the tc_auto_skip event, the value of the Func element has changed
from end_per_group to {end_per_group,GroupName}.
	When require fails in an info function, such as suite/0 or group/1, the
init configuration function is now reported as auto_skipped instead of
skipped, with the tc_done event.
	When require fails in an info function because of a configuration name
already in use, the tc_done event now reports the error with a tuple (of
size 2) tagged failed instead of skipped.

Please see the Event Handling chapter in the Common Test User's Guide for
reference.
Own Id: OTP-11524 Aux Id: OTP-11305

 Common_Test 1.7.3

 Fixed Bugs and Malfunctions

	Documentation is added for ct_netconfc:send and ct_netconfc:send_rpc.
Own Id: OTP-11132

	ct_netconfc:create_subscription only allowed one XML element inside the
'filter' element. According to RFC5277 it should be allowed to add any number
of elements inside the filter, so this is now corrected.
Own Id: OTP-11166

	The error handler installed by the Common Test hook cth_log_redirect did not
respond to init:stop/1/2. This has been corrected.
Own Id: OTP-11175 Aux Id: seq12356

	Calling ct:pal/2 or ct:print/2 when Common Test was not running, would cause
an exit. This has been changed and the string is now simply printed to stdout
instead.
Own Id: OTP-11176

	Fixed problem with the cth_log_redirect hook making calls to an undefined
function in ct_logs.
Own Id: OTP-11238

	When running tests with the 'repeat' option, the Common Test utility process
did not always terminate quickly enough after a test run, causing the start of
the next run to fail. A monitor is now used to ensure termination of the
utility process after each test run.
Own Id: OTP-11244 Aux Id: seq12396

	Test Server installed an error handler (test_server_h) only to be able to
write the name of the current test case to stdout whenever it received an
error- or progress report. This functionality was not useful and has been
removed. The built-in Common Test hook, cth_log_redirect, has instead been
improved to now also tag all error- and progress reports in the log with
suite-, group-, and/or test case name.
Own Id: OTP-11263 Aux Id: seq12251

 Improvements and New Features

	A new log, the "Pre- and Post Test I/O Log", has been introduced, which makes
it possible to capture error- and progress reports, as well as printouts made
with ct:log/2 and ct:pal/2, before and after a test run. (Some minor
improvements of the logging system have been made at the same time). Links to
the new log are found on the Common Test Framework Log page. The Common Test
User's Guide has been updated with information about the new log and also with
a new section on how to synchronize external applications with Common Test by
means of the CT Hook init and terminate functions.
Own Id: OTP-11272

 Common_Test 1.7.2

 Fixed Bugs and Malfunctions

	A design flaw in the generic connection handling in Common Test made it
impossible to implement a connection handler that could map multiple
connection names (i.e. configuration variable aliases) to single connection
pids. This problem has been solved.
Own Id: OTP-10126 Aux Id: kunagi-178 [89]

	If a telnet connection is hanging, then a call to ct_telnet:close/1 will time
out after 5 seconds and the connection process is brutally killed. In some
cases the connection would not be unregistered and attempts at opening a new
connection with the same name would make common_test try to reuse the same
connection since it believed that it was still alive. This has been
corrected - a killed connection is now always unregistered.
Own Id: OTP-10648 Aux Id: seq12212

	Test performance has been improved by means of a cache for the top level HTML
index logs (all_runs.html and index.html, in the logdir directory). This
solves problems with slow start up times and test execution times increasing
with the number of ct_run directories stored in logdir. The cached index
entries are stored in RAM during test execution and are saved to file in
logdir (for faster start up times) whenever a test run finishes.
Own Id: OTP-10855

	Testing of the test specification functionality has been improved and a couple
of minor bugs have been discovered and corrected.
Own Id: OTP-10857

	Links to the top level index files in some HTML footers had disappeared. This
error has been corrected. Also, a problem with the suite overview log file not
being closed properly has been solved.
Own Id: OTP-11046

	Common Test would, in case of timetrap error, print a warning in the log if
end_per_testcase wasn't implemented in the suite, even though it's an optional
function. This printout has been removed.
Own Id: OTP-11052

 Improvements and New Features

	If it could not be decided which test case a certain log printout belonged to,
the common test framework log was earlier used. Such printouts are now instead
sent to unexpected_io.log.html in test_server so that there is only one place
to look for "missing" printouts.
Own Id: OTP-10494 Aux Id: kunagi-319 [230]

	Make cover smarter about finding source from beam.
In particular, search using the source path in module_info if the current
heuristic fails.
Own Id: OTP-10902

	Add a variant of ct_slave:start/2 that starts a node with specified options on
the local host.
Own Id: OTP-10920

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

	A link is added from the red error printout in a test case log (for a failed
test case) to the full error description at the end of the log. The reason for
this is that the error description in the red field is sometimes truncated at
50 characters in order to keep the log as short and easy to read as possible.
Own Id: OTP-11044 Aux Id: seq12304

	A new option 'no_prompt_check' is added to ct_telnet:expect/3. If this option
is used, ct_telnet will not wait for a prompt or a newline before attempting
to match the given pattern.
Own Id: OTP-11095

 Common_Test 1.7.1

 Fixed Bugs and Malfunctions

	If an event handler installed in the CT Master event manager took too long to
respond during the termination phase, CT Master crashed because of a timeout
after 5 secs. This would leave the system in a bad state. The problem has been
solved by means of a 30 min timeout value and if CT Master gets a timeout
after that time, it now kills the event manager and shuts down properly.
Own Id: OTP-10634 Aux Id: kunagi-347 [258]

	Printing with any of the ct printout functions from an event handler installed
by Common Test, would cause a deadlock. This problem has been solved.
Own Id: OTP-10826 Aux Id: seq12250

	Using the force_stop flag/option to interrupt a test run caused a crash in
Common Test. This problem has been solved.
Own Id: OTP-10832

 Improvements and New Features

	Removed deprecated run_test program, use ct_run instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9052

 Known Bugs and Problems

	Test case execution time increases with size of test run.
Own Id: OTP-10855

 Common_Test 1.7

 Fixed Bugs and Malfunctions

	Severe errors detected by test_server (e.g. if log files directories cannot
be created) will now be reported to common_test and noted in the
common_test logs.
Own Id: OTP-9769 Aux Id: kunagi-202 [113]

	The earlier undocumented cross cover feature for accumulating cover data over
multiple tests has now been fixed and documented.
Own Id: OTP-9870 Aux Id: kunagi-206 [117]

	If a busy test case generated lots of error messages,
cth_log_redirect:post_end_per_testcase would crash with a timeout while
waiting for the error logger to finish handling all error reports. The default
timer was 5 seconds. This has now been extended to 5 minutes.
Own Id: OTP-10040 Aux Id: kunagi-173 [84]

	When a test case failed because of a timetrap time out, the Config data for
the case was lost in the following call to end_per_testcase/2, and also in
calls to the CT Hook function post_end_per_testcase/4. This problem has been
solved and the Config data is now correctly passed to the above functions
after a timetrap timeout failure.
Own Id: OTP-10070 Aux Id: kunagi-175 [86]

	Some calls to deprecated and removed functions in snmp are removed from
ct_snmp.
Own Id: OTP-10088 Aux Id: kunagi-176 [87]

	In test_server, the same process would supervise the currently running test
case and be group leader (and IO server) for the test case. Furthermore, when
running parallel test cases, new temporary supervisor/group leader processes
were spawned and the process that was group leader for sequential test cases
would not be active. That would lead to several problems:
* Processes started by init_per_suite will inherit the group leader of the
init_per_suite process (and that group leader would not process IO requests
when parallel test cases was running). If later a parallel test case caused
such a processto print using (for example) io:format/2, the calling would
hang.
* Similarly, if a process was spawned from a parallel test case, it would
inherit the temporary group leader for that parallel test case. If that
spawned process later - when the group of parallel tests have finished -
attempted to print something, its group leader would be dead and there would
be badarg exception.
Those problems have been solved by having group leaders separate from the
processes that supervises the test cases, and keeping temporary group leader
process for parallel test cases alive until no more process in the system use
them as group leaders.
Also, a new unexpected_io.log log file (reachable from the summary page of
each test suite) has been introduced. All unexpected IO will be printed into
it(for example, IO to a group leader for a parallel test case that has
finished).
Own Id: OTP-10101 Aux Id: OTP-10125

	Some bugfixes in ct_snmp:
	ct_snmp will now use the value of the 'agent_vsns' config variable when
setting the 'variables' parameter to snmp application agent configuration.
Earlier this had to be done separately - i.e. the supported versions had to
be specified twice.
	Snmp application failed to write notify.conf since ct_snmp gave the notify
type as a string instead of an atom. This has been corrected.

Own Id: OTP-10432

	Some bugfixes in ct_snmp:
	Functions register_users/2, register_agents/2 and
register_usm_users/2, and the corresponding unregister_*/1 functions
were not executable. These are corrected/rewritten.
	Function update_usm_users/2 is removed, and an unregister function is
added instead. Update can now be done with unregister_usm_users and then
register_usm_users.
	Functions unregister_*/2 are added, so specific users/agents/usm users can
be unregistered.
	Function unload_mibs/1 is added for completeness.
	Overriding configuration files did not work, since the files were written in
priv_dir instead of in the configuration dir (priv_dir/conf). This has been
corrected.
	Arguments to register_usm_users/2 were faulty documented. This has been
corrected.

Own Id: OTP-10434 Aux Id: kunagi-264 [175]

	Faulty exported specs in common test has been corrected to
ct_netconfc:hook_options/0 and inet:hostname/0
Own Id: OTP-10601

	The netconf client in common_test did not adjust the window after receiving
data. Due to this, the client stopped receiving data after a while. This has
been corrected.
Own Id: OTP-10646

 Improvements and New Features

	It is now possible to let a test specification include other test
specifications. Included specs can either be joined with the source spec (and
all other joined specs), resulting in one single test run, or they can be
executed in separate test runs. Also, a start flag/option, join_specs, has
been introduced, to be used in combination with the spec option. With
join_specs, Common Test can be told to either join multiple test
specifications, or run them separately. Without join_specs, the latter
behaviour is default. Note that this is a change compared to earlier versions
of Common Test, where specifications could only be joined. More information
can be found in the Running Tests chapter in the User's Guide (see the Test
Specifications section).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9881 Aux Id: kunagi-350 [261]

	The ct_slave:start/3 function now supports an {env,[{Var,Value}]} option
to extend environment for the slave node.
Own Id: OTP-10469 Aux Id: kunagi-317 [228]

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Update common test modules to handle unicode:
	Use UTF-8 encoding for all HTML files, except the HTML version of the test
suite generated with erl2html2:convert, which will have the same encoding as
the original test suite (.erl) file.
	Encode link targets in HTML files with test_server_ctrl:uri_encode/1.
	Use unicode modifier 't' with ~s when appropriate.
	Use unicode:characters_to_list and unicode:characters_to_binary for
conversion between binaries and strings instead of binary_to_list and
list_to_binary.

Own Id: OTP-10783

 Known Bugs and Problems

	CT drops error reason when groups/0 crashes.
Own Id: OTP-10631 Aux Id: kunagi-345 [256]

	Event handler on a ct_master node causes hanging.
Own Id: OTP-10634 Aux Id: kunagi-347 [258]

	CT fails to open telnet conn after a timetrap timeout.
Own Id: OTP-10648 Aux Id: seq12212

 Common_Test 1.6.3.1

 Known Bugs and Problems

	The following corrections/changes are done in the cth_surefire hook:
	Earlier there would always be a 'properties' element under the 'testsuites'
element. This would exist even if there were no 'property' element inside
it. This has been changed so if there are no 'property' elements to display,
then there will not be a 'properties' element either.
	The XML file will now (unless other is specified) be stored in the top log
directory. Earlier, the default directory would be the current working
directory for the erlang node, which would mostly, but not always, be the
top log directory.
	The 'hostname' attribute in the 'testsuite' element would earlier never have
the correct value. This has been corrected.
	The 'errors' attribute in the 'testsuite' element would earlier display the
number of failed testcases. This has been changed and will now always have
the value 0, while the 'failures' attribute will show the number of failed
testcases.
	A new attribute 'skipped' is added to the 'testsuite' element. This will
display the number of skipped testcases. These would earlier be included in
the number of failed test cases.
	The total number of tests displayed by the 'tests' attribute in the
'testsuite' element would earlier include init/end_per_suite and
init/end_per_group. This is no longer the case. The 'tests' attribute will
now only count "real" test cases.
	Earlier, auto skipped test cases would have no value in the 'log' attribute.
This is now corrected.
	A new attributes 'log' is added to the 'testsuite' element.
	A new option named 'url_base' is added for this hook. If this option is
used, a new attribute named 'url' will be added to the 'testcase' and
'testsuite' elements.

Own Id: OTP-10589

 Common_Test 1.6.3

 Fixed Bugs and Malfunctions

	The ct:run_test/1 option 'config' only worked with a single config file, not a
list of files. This has been fixed.
Own Id: OTP-10495

	ct_netconfc:close_session sometimes returned {error,closed} because the ssh
connection was closed (from the server side) before the rpc-reply was received
by the client. This is normal and cannot be helped. It has been corrected so
the return will be 'ok' in this case. Other error situations will still give
{error,Reason}.
Own Id: OTP-10510 Aux Id: kunagi-320 [231]

	ct_netconfc:close_session sometimes returned {error,closed} or (if the
connection was named) {error,{process_down,Pid,normal}} because the ssh
connection was closed (from the server side) before the rpc-reply was received
by the client. This is normal and cannot be helped. It has been corrected so
the return will be 'ok' in this situation.
Own Id: OTP-10570

	Fix bug where ct:require of same name with same config would return
name_in_use.
Own Id: OTP-10572

 Improvements and New Features

	A new test case group search functionality has been implemented that makes
Common Test search automatically through the group definitions tree (the
return value of groups/0) and create tests for all paths of nested groups that
match the specification. It also allows for specifying unique paths to sub
groups in order to avoid execution of unwanted tests. This new feature can be
used whenever starting a test run by means of the ct_run program, the
ct:run_test/1 API function, or a Test Specification. Details can be found in
the Test Case Group Execution section in the Running Tests chapter.
Own Id: OTP-10466 Aux Id: kunagi-276 [187]

 Known Bugs and Problems

	Restore Config data if lost when test case fails.
Own Id: OTP-10070 Aux Id: kunagi-175 [86]

	IO server error in test_server.
Own Id: OTP-10125 Aux Id: OTP-10101, kunagi-177 [88]

	Faulty connection handling in common_test.
Own Id: OTP-10126 Aux Id: kunagi-178 [89]

 Common_Test 1.6.2.1

 Fixed Bugs and Malfunctions

	The interactive mode (ct_run -shell) would not start properly. This error has
been fixed.
Own Id: OTP-10414

 Common_Test 1.6.2

 Fixed Bugs and Malfunctions

	If a CT hook function caused a crash, this could in some situations cause
Common Test to terminate due to an illegal IO operation. This error has been
corrected.
Own Id: OTP-10050 Aux Id: seq12039

	The Common Test documentation states that timetraps are never active during
execution of CT hook functions. This was only true for post hook functions,
not for pre hook functions. The code for CT hooks has been modified to behave
according to the documentation.
Own Id: OTP-10069

	If a CT hook function would call the exit/1 or throw/1 BIF (possibly
indirectly, e.g. as a result of a timeout in gen_server:call/3), Common Test
would hang. This problem has been fixed.
Own Id: OTP-10072 Aux Id: seq12053

	The documentation has been updated with information about how to deal with
chaining of hooks which return fail/skip.
Own Id: OTP-10077 Aux Id: seq12048

	When ct_hooks called the id/1 functions of multiple hooks, it would reverse
the order of the hooks and call the proceeding init/2 calls in the wrong
order. This has been fixed.
Own Id: OTP-10135

	The surefire hook now correctly handles autoskipped initialization and test
functions.
Own Id: OTP-10158

	The ct:get_status/0 function failed to report status if a parallel test case
group was running at the time of the call. This has been fixed and the return
value for the function has been updated. Please see the ct reference manual
for details.
Own Id: OTP-10172

 Improvements and New Features

	The support for "silent connections" has been updated to include ssh. Also, a
silent_connections term has been added to the set of test specification terms.
Own Id: OTP-9625 Aux Id: seq11918

	It is now possible to specify an arbitrarily large tuple as the requires
config data when using require and ct:get_config. See the ct:get_config and
ct:require reference manual pages for details about which keys are allowed.
This change introduces a backwards incompatibility in the ct:require/2
interface. Previously when doing ct:require(a_name,{key,subkey}), a_name
would be associated with key. This has been changed to that a_name is
associated with subkey. This change also effects using require in an
suite/group/testcase info function.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9626 Aux Id: seq11920

	The ct_run program now sets the OS process exit status before it ends. Value 0
indicates a successful test result, 1 indicates one or more failed or
auto-skipped test cases, and 2 indicates test execution failure.
Own Id: OTP-9865 Aux Id: OTP-10087

	It is now possible to sort the HTML tables by clicking on the header elements.
In order to reset a sorted table, the browser window should simply be
refreshed. This feature requires that the browser supports javascript, and has
javascript execution enabled. If the 'ct_run -basic_html' flag is used, no
javascript code is included in the generated HTML code.
Own Id: OTP-9896 Aux Id: seq12034, OTP-9835

	A netconf client, ct_netconfc, is added to common_test. It supports basic
netconf functionality over SSH. In order to allow testing of both success and
failure cases, it is intentionally written to allow non-standard behavior.
Own Id: OTP-10025

	The test specification term {define,Constant,Value} has been introduced,
which makes it possible to replace constant names (atom()) with values
(term()) in arbitrary test specification terms. The 'define' makes the (now
deprecated) 'alias' term obsolete. More details, including examples, can be
found in the Test Specifications chapter in the Common Test User's Guide.
Own Id: OTP-10049

	Verbosity levels for log printouts has been added. This makes it possible to
specify preferred verbosity for different categories of log printouts, as well
as general printouts (such as standard IO), to allow control over which
strings get printed and which get ignored. New versions of the Common Test
logging functions, ct:log, ct:pal and ct:print, have been introduced, with a
new Importance argument added. The Importance value is compared to the
verbosity level at runtime. More information can be found in the chapter about
Logging in the Common Test User's Guide.
Own Id: OTP-10067 Aux Id: seq12050

	The return values of ct:run_test/1 and ct:run_testspec/1 have been changed
from an uninformative 'ok' (independent of the test outcome) to a value,
{Ok,Failed,{UserSkipped,AutoSkipped}} (all integers), that presents the
final test case result, or a value, {error,Reason}, that informs about fatal
test execution failure. See details in the reference manual for ct.
Own Id: OTP-10087 Aux Id: OTP-9865

	The test specification syntax has been updated with new and missing terms,
such as 'define', 'verbosity', 'auto_compile', 'stylesheet',
'silent_connections', 'basic_html' and 'release_shell'. See the Test
Specification chapter in the Common Test User's Guide for details.
Own Id: OTP-10089 Aux Id: OTP-10049

	It is now possible to pause execution of a test case, by calling the
ct:break/1/2 function. Execution is resumed with a call to ct:continue/0/1.
Break/continue also works for test cases executing in parallel. See the ct
reference manual for details.
Own Id: OTP-10127

	It is now possible to send user defined events from a testcase which will be
picked up by the installed event handler.
Own Id: OTP-10157

	A new start option, release_shell, for ct:run_test/1, has been added, which
makes Common Test release the shell process after the test suite compilation
phase is finished. For details, see the Running Tests chapter in the User's
Guide.
Own Id: OTP-10248 Aux Id: OTP-10127

 Common_Test 1.6.1

 Fixed Bugs and Malfunctions

	Common Test adds the test suite directories to the code path before executing
the tests. These directories should also be removed from the code path at the
end of the test run, which, prior to this fix, was not performed.
Own Id: OTP-9595

	An entry is now created in the index.html file (i.e. the overview file for the
test run) for each repeated test during a test run. This was previously not
the case. Note that in the top level (logdir) index file, however, only the
last test result is listed. For example, given the test spec:
[{merge_tests,false},{dirs,"test1"},{dirs,"test1"}]. In the index file
for the test run (under Logdir/ct_run.Node.Date.Time), both tests are listed.
In the top level index file (under Logdir), only the last test is listed (one
has to find the previous results through the all_runs.html file).
Own Id: OTP-9634 Aux Id: seq11924

	After a test case timeout or abortion, the end_per_testcase function executes
on a new dedicated process. The group leader for this process should be set to
the IO server for the test case, which was not done properly. The result of
this error was that no warnings about end_per_testcase failing or timing out
were ever printed in the test case log. Also, help functions such as e.g.
test_server:stop_node/1, attempting to synchronize with the IO server, would
hang. The fault has been corrected.
Own Id: OTP-9666

	The ct:get_status/0 function would cause the calling process to receive 'DOWN'
messages if no tests were running at the time of the call. This bug has been
fixed.
Own Id: OTP-9830 Aux Id: seq11975

	A deadlock situation could occur if Common Test is forwarding error_handler
printouts to Test Server at the same time a new test case is starting. This
error has been fixed.
Own Id: OTP-9894

	A link to the ct_run program is now created, as expected, in the installation
bin directory (default /usr/local/bin) during 'make install'.
Own Id: OTP-9898

	Using the repeat, duration or until option with ct:run_test/1, would cause an
infinite loop. This has been fixed.
Own Id: OTP-9899

	Two or more test cases executing in parallel and printing to screen at the
same time with ct:pal/2/3 or ct:print/2/3 could write into each other's
"slots" and create a mess of mixed strings. In order to avoid this, only a
single IO message is now ever sent per printout call.
Own Id: OTP-9900 Aux Id: OTP-9904

	When a test case was killed because of a timetrap timeout, the current
location (suite, case and line) was not printed correctly in the log files.
This has been corrected.
Own Id: OTP-9930 Aux Id: seq12002

	The wrong exit location was printed in the log file when ct:fail/1 or
ct_fail/2 was called.
Own Id: OTP-9933 Aux Id: seq12002

	Test Server and Common Test would add new error handlers with each test run
and fail to remove previously added ones. In the case of Test Server, this
would only happen if SASL was not running on the test node. This has been
fixed.
Own Id: OTP-9941 Aux Id: seq12009

	If a test case process was terminated due to an exit signal from a linked
process, Test Server failed to report the correct name of the suite and case
to the framework. This has been corrected.
Own Id: OTP-9958 Aux Id: OTP-9855

	When starting a test with ct_run and adding a directory to the code path using
-pa or -pz (preceding -erl_args), Common Test would delete any existing
directory in the code path with the same base name (see filename:basename/1)
as the directory being added. This has been fixed.
Own Id: OTP-9964

	If passing two or more directories with the same base name (see
filename:basename/1) to Common Test with ct_run -pa, only one of the
directories would actually be added.
Own Id: OTP-9975 Aux Id: seq12019

	Configuration data required by the group info function was deleted before the
call to post_end_per_group, which made it impossible for the hook function to
read and use the data in question. This has been fixed.
Own Id: OTP-9989

	Disabling built-in hooks in a test specification was ignored, this has now
been fixed.
Own Id: OTP-10009

	Various typographical errors corrected in documentation for common_test,
driver, erl_driver and windows installation instructions. (Thanks to Tuncer
Ayaz)
Own Id: OTP-10037

 Improvements and New Features

	A new optional feature has been introduced that enables Common Test to
generate priv_dir directory names that are unique for each test case or config
function. The name of the option/flag is 'create_priv_dir' and it can be set
to value 'auto_per_run' (which is the default, existing, behaviour), or
'auto_per_tc' or 'manual_per_tc'. If 'auto_per_tc' is used, Test Server
creates a dedicated priv_dir automatically for each test case (which can be
very expensive in case of many and/or repeated cases). If 'manual_per_tc' is
used, the user needs to create the priv_dir explicitly by calling the new
function ct:make_priv_dir/0.
Own Id: OTP-9659 Aux Id: seq11930

	A column for test case group name has been added to the suite overview HTML
log file.
Own Id: OTP-9730 Aux Id: seq11952

	It is now possible to use the post_end_per_testcase CT hook function to print
a comment for a test case in the overview log file, even if the test case gets
killed by a timetrap or unknown exit signal, or if the end_per_testcase
function times out.
Own Id: OTP-9855 Aux Id: seq11979

	The pre- and post CT hook functions are now always called for all
configuration functions, even for configuration functions that are not
implemented in the test suite.
Own Id: OTP-9880 Aux Id: seq11993

	Common Test will now print error information (with a time stamp) in the test
case log file immediately when a test case fails. This makes it easier to see
when, in time, the fault actually occurred, and aid the job of locating
relevant trace and debug printouts in the log.
Own Id: OTP-9904 Aux Id: seq11985, OTP-9900

	Test Server has been modified to check the SASL errlog_type parameter when
receiving an error logger event, so that it doesn't print reports of type that
the user has disabled.
Own Id: OTP-9955 Aux Id: seq12013

	The test specification term 'skip_groups' was implemented in Common Test v1.6.
It was never documented however, which has now been attended to. Please see
the Test Specifications chapter in the User's Guide for information.
Own Id: OTP-9972

	The Common Test Master has been updated to use a CSS style sheet for the html
log files.
Own Id: OTP-9973

	If the init_per_group/2 and end_per_group/2 functions are not implemented in
the test suite, Common Test calls it's own local init- and end functions -
previously named ct_init_per_group/2 and ct_end_per_group/2 - when a group is
executed. These functions have been renamed init_per_group/2 and
end_per_group/2 respectively. Note that this may affect any user event handler
identifying events by the old names.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9986 Aux Id: OTP-9992

	By specifying a user defined function ({M,F,A} or fun) as timetrap value,
either by means of an info function or by calling ct:timetrap/1, it is now
possible to set a timetrap that will be triggered when the user function
returns.
Own Id: OTP-9988 Aux Id: OTP-9501, seq11894

	If the optional configuration functions init_per_suite/1 and end_per_suite/1
are not implemented in the test suite, local Common Test versions of these
functions are called instead, and will be displayed in the overview log file.
Any printouts made by the pre- or post_init_per_suite and pre- or
post_end_per_suite hook functions are saved in the log files for these
functions.
Own Id: OTP-9992

	A hook has been added to common test which outputs surefire XML for usage
together with CI tools such as Jenkins. To enable the hook pass '-ct_hooks
cth_surefire' to ct_run. See the CTH documentation for more details.
Own Id: OTP-9995

 Common_Test 1.6

 Improvements and New Features

	A Getting Started chapter has been added to the Common Test User's Guide.
Own Id: OTP-9156

	The test case group info function has been implemented in Common Test. Before
execution of a test case group, a call is now made to
TestSuite:group(GroupName). The function returns a list of test properties,
e.g. to specify timetrap values, require configuration data, etc (analogue to
the test suite- and test case info function). The scope of the properties set
by group(GroupName) is all test cases and sub-groups of group GroupName.
Own Id: OTP-9235

	Common Test hooks are now in a final supported version. The Common Test hooks
allow you to abstract out initialization behaviour that is common to multiple
test suites into one place and also extend the behaviour of a suite without
changing the suite itself. For more information see the Common Test user's
guide.
Own Id: OTP-9449

	A new built-in common test hook has been added which captures error_logger and
SASL event and prints them in the testcase log. To disable this (and any other
built-in hooks) pass 'enable_builtin_hooks false' to common test.
Own Id: OTP-9543

	Common Test now calls info functions also for the init/end_per_suite/1 and
init/end_per_group/2 configuration functions. These can be used e.g. to set
timetraps and require external configuration data relevant only for the
configuration functions in question (without affecting properties set for
groups and test cases in the suite). The info function for
init/end_per_suite(Config) is init/end_per_suite(), and for
init/end_per_group(GroupName,Config) it's init/end_per_group(GroupName).
Info functions cannot be used with init/end_per_testcase(TestCase, Config),
since these configuration functions execute on the test case process and will
use the same properties as the test case (i.e. properties set by the test case
info function, TestCase()).
Own Id: OTP-9569

	It's now possible to read the full name of the test case log file during
execution. One way to do this is to lookup it up as value of the key
tc_logfile in the test case Config list (which means it can also be read
by a pre- or post Common Test hook function). The data is also sent with the
event #event{name=tc_logfile,data={{Suite,Func},LogFileName}}, and can be
read by any installed event handler.
Own Id: OTP-9676 Aux Id: seq11941

	The look of the HTML log files generated by Common Test and Test Server has
been improved (and made easier to customize) by means of a CSS file.
Own Id: OTP-9706

	Functions ct:fail(Format, Args) and ct:comment(Format, Args) have been added
in order to make printouts of formatted error and comment strings easier (no
need for the user to call io_lib:format/2 explicitly).
Own Id: OTP-9709 Aux Id: seq11951

	The order in which ct hooks are executed for cleanup hooks (i.e. end_per
hooks) has been reversed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9774 Aux Id: seq11913

	Printouts to stdout may be captured during test case execution. This is useful
in order to e.g. read and parse tty printouts from the SUT during test case
execution (if necessary, say, to determine the outcome of the test). The
capturing session is started with ct:capture_start/0, and stopped with
ct:capture_stop/0. The list of buffered strings is read and purged with
ct:capture_get/0/1. It's possible to filter out printouts made with
ct:log/2/3 and ct:pal/2/3 from the captured list of strings. This is done
by calling capture_get/1 with a list of log categories to exclude.
Own Id: OTP-9775

	The syntax for specifying test case groups in the all/0 list has been extended
to include execution properties for both groups and sub-groups. The properties
specified in all/0 for a group overrides the properties specified in the group
declaration (in groups/0). The main purpose of this extension is to make it
possible to run the same set of tests, but with different properties, without
having to declare copies of the group in question. Also, the same syntax may
be used in test specifications in order to change properties of groups at the
time of execution, without having to edit the test suite. Please see the
User's Guide for details and examples.
Own Id: OTP-9809 Aux Id: OTP-9235

 Known Bugs and Problems

	Fix problems in CT/TS due to line numbers in exceptions.
Own Id: OTP-9203

 Common_Test 1.5.5

 Fixed Bugs and Malfunctions

	An error in how comments are colored in the test suite overview html log file
has been corrected. As result, a new framework callback function,
format_comment/1, has been introduced.
Own Id: OTP-9237

	Automatically generated init- and end-configuration functions for test case
groups caused incorrect execution order of test cases. This has been
corrected.
Own Id: OTP-9369

	If multiple directories were specified with the 'logdir' flag/option, Common
Test would crash. This has been fixed so that an error is properly reported
instead.
Own Id: OTP-9370

	If ct:log/2 was called with bad arguments, this could cause the Common Test IO
handling process to crash. This fault has been corrected.
Own Id: OTP-9371 Aux Id: OTP-8933

	A bug has been fixed that made Test Server call the end_tc/3 framework
function with an incorrect module name as first argument.
Own Id: OTP-9379 Aux Id: seq11863

	If a timetrap timeout occurred during execution of a function in a lib module
(i.e. a function called directly or indirectly from a test case), the Suite
argument in the end_tc/3 framework callback function would not correctly
contain the name of the test suite, but the lib module. (This would only
happen if the lib module was compiled with ct.hrl included). This error has
been solved.
Own Id: OTP-9398

	Corrections of the vts mode. It will now report errors (about e.g. incorrect
config files) instead of crashing or hanging. Furthermore, the requirement
that the test directory name must have a "_test" suffix has been removed.
Also, a workaround has been implemented for the limitation that the file
browser (in many web browsers) will only return the basic file name, not the
full directory path (which made it impossible to have config files in other
directories than the main test directory).
Own Id: OTP-9429

	Add a proplist() type
Recently I was adding specs to an API and found that there is no canonical
proplist() type defined. (Thanks to Ryan Zezeski)
Own Id: OTP-9499

	It is now possible to use the 'step' flag/option to run the debugger for test
suites that contain test case groups. This previously caused Common Test to
crash. If 'step config' is specified, breakpoints are now also automatically
set on init_per_group and end_per_group. Note that breakpoints are always set
automatically on test case functions and this is true also for grouped cases.
Own Id: OTP-9518 Aux Id: OTP-8933

	The test index page was not refreshed at the start of each test suite which
made it impossible to follow test execution by means of refreshing the browser
window (no links to follow). This has been fixed.
Own Id: OTP-9520 Aux Id: OTP-8933

	If a test suite would start with a test case group defined without the
init_per_group/2 and end_per_group/2 function, init_per_suite/1 would not
execute initially and logging of the test run would fail. This error has been
fixed.
Own Id: OTP-9584

	The "Missing Suites" link from the top level index page was incorrect and has
been fixed.
Own Id: OTP-9592

 Improvements and New Features

	Various corrections and updates to improve the handling and reporting of
errors.
Own Id: OTP-8933

	The dir and suite start option can now be used in combination. E.g. executing
my_SUITE in directory my_tests can either be specified as "ct_run -suite
my_tests/my_SUITE" or as "ct_run -dir my_tests -suite my_SUITE". Furthermore,
the specification: ct:run_test([{suite,["./my_SUITE"]},{testcase,t1}]) is
now interpreted as ct:run_test([{suite,"./my_SUITE"},{testcase,t1}]),
i.e. only testcase t1 in test suite my_SUITE - not all cases - will be
executed.
Own Id: OTP-9155

	A new option, 'logopts', has been introduced, to make it possible to modify
some aspects of the logging behaviour in Common Test (or Test Server). For
example, whenever an io printout is made, test_server adds newline (\n) to
the end of the output string. This may not always be a preferred action and
can therefore be disabled by means of "ct_run ... -logopts no_nl" (or
ct:run_test([..., {logopts,[no_nl]}])). A new framework callback function,
get_logopts/0, has been introduced (see the ct_framework module for details).
Own Id: OTP-9372 Aux Id: OTP-9396

	A new option, 'logopts', has been introduced, to make it possible to modify
some aspects of the logging behaviour in Common Test (or Test Server). For
example, if the html version of the test suite source code should not be
generated during the test run (and consequently be unavailable in the log file
system), the feature may be disabled by means of "ct_run ... -logopts no_src"
(or ct:run_test([..., {logopts,[no_src]}])). A new framework callback
function, get_logopts/0, has been introduced (see the ct_framework module for
details).
Own Id: OTP-9396 Aux Id: seq11869, OTP-9372

	CT Hooks can now be assigned a priority. The priority of a CTH determines when
it should execute in relation to other CTHs. The CTH with the lowest priority
will be executed first, CTHs with equal priority will be executed in the order
which they were installed.
Own Id: OTP-9445

	It is now possible to use a tuple {M,F,A}, or a fun, as timetrap
specification in the suite info function or test case info functions. The
function must return a valid timeout value, as documented in the common_test
man page and in the User's Guide.
Own Id: OTP-9501 Aux Id: seq11894

	A new built-in common test hook has been added which captures error_logger and
SASL event and prints them in the testcase log. To disable this (and any other
built-in hooks) pass 'enable_builtin_hooks false' to common test.
Own Id: OTP-9543

	Common Test now has the possibility to have built-in hooks which are started
by default when any test is run. To disable built-in hooks pass
'enable_builtin_hooks false' to common test. See the common test hooks
documentation for more details.
Own Id: OTP-9564

 Common_Test 1.5.4

 Fixed Bugs and Malfunctions

	It was previously not possible to use timetrap value 'infinity' with
ct:timetrap/1. This has been fixed.
Own Id: OTP-9159

	The Common Test VTS mode has been updated to be able to report test results of
suites that include test case groups (when it would previously crash).
Own Id: OTP-9195

	Common Test now refreshes the very top level index.html page at the start of
each individual test in a test run, so that progress of the ongoing test can
be tracked by following the link to its overview page.
Own Id: OTP-9210 Aux Id: OTP-9054

	A bug that made it impossible to cancel the previous timetrap when calling
ct:timetrap/1 has been corrected.
Own Id: OTP-9233 Aux Id: OTP-9159

	Fix bug which would make cth's to not be removed when out of scope when adding
a cth in suite/0 and crashing in pre_init_per_suite.
Own Id: OTP-9264

 Improvements and New Features

	It is now possible to return a tuple {fail,Reason} from init_per_testcase/2.
The result is that the associated test case gets logged as failed without ever
executing.
Own Id: OTP-9160 Aux Id: seq11502

	Common Test now accepts, but ignores, empty test case group specifications.
Own Id: OTP-9161

 Common_Test 1.5.3

 Fixed Bugs and Malfunctions

	Added an option to test specs which allow the execution of tests as is,
instead of doing merging of tests on the same "level". See the merge_tests
directive the test specification documentation.
Own Id: OTP-9026 Aux Id: seq11768

 Improvements and New Features

	Alpha release of Common Test Hooks (CTH). CTHs allow the users of common test
to abstract out common behaviours from test suites in a much more elegant and
flexible way than was possible before. Note that the addition of this feature
may introduce minor changes in the undocumented behaviour of the interface
between common_test and test_server.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8851

 Common_Test 1.5.2

 Fixed Bugs and Malfunctions

	Updated ct:get_status documentation to describe no_tests_running return value.
Own Id: OTP-8895 Aux Id: seq11701

	Fixed race condition test failures in the test suites testing common test's
parallel groups feature.
Own Id: OTP-8921

	The include directive of testspecs now work when used on a remote node.
Own Id: OTP-8935 Aux Id: seq11731

 Improvements and New Features

	ct:parse_table can now handle multiline sql rows
Own Id: OTP-8907 Aux Id: seq11702

	The run_test executable has been renamed to the less generic ct_run to better
work with other applications. run_test will remain until R16B at which point
it will be removed.
Own Id: OTP-8936

 Common_Test 1.5.1

 Fixed Bugs and Malfunctions

	Returning {return_group_result,failed} from end_per_group in a group that is
part of a sequence, did not cause the proceeding cases (or groups) to get
skipped. This has been fixed.
Own Id: OTP-8753 Aux Id: seq11644

	ct:install now works as the documentation describes.
Own Id: OTP-8818 Aux Id: seq-11666

 Improvements and New Features

	Common Test has been updated to handle start options and test specification
terms for test case groups (and test cases in groups). Also, an option named
'label', has been added that associates the test run with a name that Common
Test prints in the overview HTML logs.
Own Id: OTP-8725 Aux Id: OTP-8727

	Andrey Pampukha has been added to the AUTHORS file. Thank you Andrey for your
work on configuration data handling, Large Scale Testing improvements, and
other useful updates and fixes.
Own Id: OTP-8803

	The Configuration Data chapter in the User's Guide has been updated.
Own Id: OTP-8804

	Milliseconds are now included in timestamps in Common Test log entries.
(Thanks to Tomas Johansson.)
Own Id: OTP-8808

 Common_Test 1.5

 Fixed Bugs and Malfunctions

	Process calls using monitors in Common Test would not clear the inbox of
remaining DOWN messages. This has been fixed.
Own Id: OTP-8621 Aux Id: seq11560

 Improvements and New Features

	It is now possible for the user to provide specific callback modules that
handle test configuration data, so that data on arbitrary form can be accessed
(e.g. by reading files or by communicating with a configuration server
process). Two default callback modules have been introduced in Common Test:
ct_config_plain and ct_config_xml. The former is used to handle the
traditional Common Test configuration files (with terms on key-value tuple
form) and the latter to handle configuration data on XML representation.
Own Id: OTP-8485

	It is now possible to execute test suites that are not necessarily available
on the local file system, but have been loaded on the test node in advance
(e.g. sent as binaries from a remote node and loaded by RPC). A requirement is
that the no_auto_compile (or {auto_compile,false}) parameter has been set.
Own Id: OTP-8490 Aux Id: seq11500

	Test Server will now call the end_per_testcase/2 function even if the test
case has been terminated explicitly (with abort_current_testcase/1), or after
a timetrap timeout. Under these circumstances the return value of
end_per_testcase is completely ignored. Therefore the function will not be
able to change the reason for test case termination by returning
{fail,Reason}, nor will it be able to save data with {save_config,Data}.
Own Id: OTP-8500 Aux Id: seq11521

	It is now possible to use the test specification term 'init' to start Common
Test nodes automatically, as well as have initial function calls evaluated on
the nodes. A default callback module for the 'init' term, ct_slave, has been
introduced to enable Common Test Master to perform host login and node startup
operations over ssh.
Own Id: OTP-8570

	The run_test script has been replaced by a program (with the same name) which
can be executed without explicit installation. The start flags are the same as
for the legacy start script.
Own Id: OTP-8650

	Previously, a repeat property of a test case group specified the number of
times the group should be repeated after the main test run. I.e. {repeat,N}
would case the group to execute 1+N times. To be consistent with the behaviour
of the run_test repeat option, this has been changed. N now specifies the
absolute number of executions instead.
Own Id: OTP-8689 Aux Id: seq11502

	With the run_test -erl_args option, it's possible to divide the options on the
run_test command line into ones that Common Test should process (those
preceding -erl_args, and ones it should ignore (those succeeding -erl_args).
Options preceding -erl_args that Common Test doesn't recognize are also
ignored (i.e. the same behaviour as earlier versions of Common Test).
Own Id: OTP-8690 Aux Id: OTP-8650

	Directories added with -pa or -pz in the pre-erl_args part of the run_test
command line will be converted from relative to absolute, this to avoid
problems loading user modules when Common Test switches working directory
during the test run.
Own Id: OTP-8691 Aux Id: OTP-8650

	The timetrap handling has been made more user controllable by means of new
start options and new ct interface functions. With the 'multiply_timetraps'
start option, it's possible to specify a value which all timetrap timeout
values get multiplied by. This is useful e.g. to extend the timetraps
temporarily while running cover or trace. The 'scale_timetraps' start option
switches on or off the Test Server timetrap scaling feature (which tries to
detect if the tests may benefit from extended timetraps, e.g. due to running
certain test tools, and performs the scaling automatically). Furthermore, the
ct:timetrap/1 function has been introduced, which makes it possible to
set/reset timetraps during test execution. Also, a ct:sleep/1 function is now
available, which takes the timetrap parameters into account when calculating
the time to suspend the process.
Own Id: OTP-8693

	A new run_test start option, event_handler_init, has been added that takes a
start argument which gets passed to the init function of the event handler.
Own Id: OTP-8694

 Common_Test 1.4.7

 Fixed Bugs and Malfunctions

	The auto compilation feature of Common Test did not recognize if a header file
included in a test suite was modified (if the dir start flag/option was used).
This has been fixed.
Own Id: OTP-8396 Aux Id: seq11488, OTP-8311

 Improvements and New Features

	The tc_status value in the Config list for a test case that has failed because
of a timetrap timeout, has changed from {tc_status,timeout} to
{tc_status,timetrap_timeout}.
Own Id: OTP-8302

	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343

	It is now possible to include the ct.hrl using the -include_lib directive.
(Thanks to Fred Hebert.)
Own Id: OTP-8379

	The telnet client in Common Test sent [IAC,DO,NOP] to the server in attempt
to keep the connection alive. This is not a valid sequence according to the
standard, and some telnet servers would terminate the connection because of
it. The client has been changed to send [IAC,NOP] every 10 secs instead,
which should be a valid sequence. The client does not negotiate this type of
"keep alive" message with the server, and if it causes problems, the user may
disable the keep alive feature by adding {keep_alive,false} to the telnet
configuration data for the server/connection. Please see the ct_telnet and
unix_telnet manual pages for details.
Own Id: OTP-8450 Aux Id: OTP-8311

 Common_Test 1.4.6

 Fixed Bugs and Malfunctions

	If the init_per_testcase/2 function fails, the test case now gets marked and
counted as auto skipped, not user skipped (which would previously happen).
Own Id: OTP-8289

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	For a failed test case, the tc_done event is supposed to report info on the
form {failed,Error}. Only Error was reported, however, which has now been
fixed.
Own Id: OTP-8235 Aux Id: seq-11414

	It is now possible to fail a test case from the end_per_testcase/2 function,
by returning {fail,Reason}.
Own Id: OTP-8284

	It is now possible to fail a test case by having the end_tc/3 framework
function return {fail,Reason} for the test case.
Own Id: OTP-8285

	The test_server framework API (e.g. the end_tc/3 function) has been modified.
See the test_server_ctrl documentation for details.
Own Id: OTP-8286 Aux Id: OTP-8285, OTP-8287

	Various updates of the test events have been implemented. The data field for
some events, such as tc_done and tc_auto_skip has been modified to make
pattern matching on the data easier and more consistent. Also the order in
which some events are received has been altered. E.g. the tc_auto_skip event
for a test case now comes after the tc_done for the failed configuration
function (not before) which makes more sense. Note that no new events have
been added and that the event record remains unchanged.
Own Id: OTP-8287 Aux Id: OTP-8235

	The marquee used for test names on the all_runs.html page has been removed on
request. Note that the test name field has the full text string in a title
tag, which is displayed when hovering the mouse pointer over it (i.e. if the
web browser supports title tags).
Own Id: OTP-8288

	It is now possible to refresh the top level index files in an arbitrary log
directory by specifying a {refresh_logs,LogDir} tuple in the ct:run_test/1
options list. Also the -refresh_logs flag for the run_test script has been
extended to take an optional LogDir argument, i.e. -refresh_logs [LogDir]. If
no LogDir is specified, current working directory is assumed, unless the log
directory is set with the -logdir flag.
Own Id: OTP-8290

	It was previously required that test suites were located under a test object
(or OTP application) sub-directory named "test" (or under a directory named
"<testobject>_test"). This has been changed so that Common Test now looks for
suites primarily in a test sub-directory only if the directory exists.
Otherwise it will assume the suites are stored in the same directory the user
specifies with e.g. the 'dir' start flag/option.
Own Id: OTP-8294

 Common_Test 1.4.5

 Fixed Bugs and Malfunctions

	The Common Test logger process crashed if a test case in a sequence (declared
with sequences/0) failed. This fault has been corrected.
Own Id: OTP-8089 Aux Id: seq11334

 Improvements and New Features

	Various updates and fixes in Common Test and Test Server.
Own Id: OTP-8045 Aux Id: OTP-8089,OTP-8105,OTP-8163

	Errors in coverage data collection and analysis were difficult to detect. The
logging has been improved so that more information about e.g. imported and
missing modules is printed to the html log files.
Own Id: OTP-8163 Aux Id: seq11374

	The Common Test HTML overview pages have been improved. It is now possible to
see if a test case has been skipped explicitly or because a configuration
function has failed. Also, the history page (all_runs.html) now has scrolling
text displaying the test names. The old format (showing names as a truncated
string) can still be generated by means of the flag/option 'basic_html'.
Own Id: OTP-8177

 Common_Test 1.4.2

 Improvements and New Features

	Various corrections and improvements of Common Test and Test Server.
Own Id: OTP-7981

 Common_Test 1.4.1

 Improvements and New Features

	Minor updates and corrections.
Own Id: OTP-7897

 Common_Test 1.4

 Improvements and New Features

	A support client module for SSH and SFTP, ct_ssh, has been introduced in
Common Test.
Own Id: OTP-7838

	Test case groups have been introduced. With this feature it's possible to
execute groups (possibly nested) of test cases, each group wrapped with a call
to function init_per_group/2 and end_per_group/2. Group definitions are done
by means of the new call-back function groups/0, which should return a list of
definitions. A group definition contains a name tag, a list of properties and
a list of test cases (including possible nested group definitions). The
properties make it possible to execute test cases in parallel, in sequence and
in shuffled order. It is also possible to repeat test cases according to
different criteria. The properties can be combined, making it possible to e.g.
repeat a conf case a certain number of times and execute the test cases in
different (random) order every time. Available properties are: parallel,
sequence, shuffle, repeat, repeat_until_all_ok, repeat_until_any_ok,
repeat_until_any_fail and repeat_until_all_fail. Please see the Common Test
User's Guide for details.
Own Id: OTP-7839 Aux Id: OTP-7511

	It is now possible to use DES3 encrypted configuration files with Common Test.
Own Id: OTP-7842 Aux Id: OTP-7838

	In previous versions of Common Test, only one FTP connection could be opened
per configuration target name. This has been updated so that multiple
connections may be opened. The possibility to use named connections is still
supported.
Own Id: OTP-7853 Aux Id: OTP-7838

	The Erlang mode for Emacs has been updated with new and modified skeletons for
Common Test and TS. Syntax for test case groups in Common Test (and conf cases
with properties in TS) has been added and a new minimal Common Test suite
skeleton has been introduced.
Own Id: OTP-7856

 Common_Test 1.3.6

 Fixed Bugs and Malfunctions

	When running a test which includes all suites in a test directory, if the auto
compilation would fail for one suite, all following suites would be excluded
from the test. This was an unwanted behaviour and has been corrected. Now all
suites will always be compiled and only the failing ones excluded from the
test (and logged as missing).
Own Id: OTP-7750 Aux Id: OTP-7803

	The step functionality in Common Test (based on interaction with Debugger) was
broken. This has been fixed, and some new step features have also been added.
Please see the Common Test User's Guide for details.
Own Id: OTP-7800 Aux Id: seq11106

 Improvements and New Features

	It is now possible for the user to specify include directories that Common
Test will pass along to the compiler when suite and help modules are being
compiled (which Common Test performs automatically before running tests).
Own Id: OTP-7803 Aux Id: OTP-7750

 Common_Test 1.3.5

 Fixed Bugs and Malfunctions

	If the Erlang runtime system was started without access to an erlang shell
(e.g. -noshell), compilation errors would cause a crash in the Common Test
application. Without access to a shell, Common Test cannot prompt the user to
choose to continue or abort the test session, but must assume that the session
should proceed.
Own Id: OTP-7749 Aux Id: seq11175, seq11180

 Improvements and New Features

	It is now possible for the Common Test user to disable the auto-compile
feature. This is done by specifying the run_test flag -no_auto_compile, or the
ct:run_test/1 option {auto_compile,false}.
Own Id: OTP-7663

	A new function, ct:get_config/3, has been added to Common Test that makes it
possible to - if a particular config variable has been defined in multiple
config files - return all matching values for the variable. The order of the
elements in the returned list is the same as the specified order of the config
files.
Own Id: OTP-7758 Aux Id: seq11158

	Because a telnet connection was always identified by a config variable alias,
it was impossible to open multiple connections using the same telnet host data
entry in the config file. This limitation has been removed by making it
possible to associate a connection with handle value only (i.e. multiple
connections may be opened using the same config variable). See
ct_telnet:open/4 for details.
Own Id: OTP-7781

	A new syntax for defining default config data values has been introduced. In
previous versions of Common Test, to define and access a default value for a
config variable (in the suite info- or test case info function), an alias name
had to be used. With the new syntax you may define default values without
reference to aliases, like this: {default_config,VarName,DefaultValue}.
Please see the User's Guide for more info.
Own Id: OTP-7782

	In previous versions of Common Test, whenever a config variable got associated
with a name (by means of a require statement), the config variable name was
replaced with the new name. This introduced unwanted dependencies between test
cases (e.g. if one test case would introduce a new name, the following test
cases could no longer access the config data by means of the original
variable). This functionality has now been updated so that when new names are
introduced with require, they become aliases (references) instead of
replacements. Hence, config data elements can always, at any time, be accessed
by means of the original config variable names.
Own Id: OTP-7783

 Common_Test 1.3.4

 Improvements and New Features

	Common Test now uses the re application instead of the previous rx driver to
perform regular expression matching on telnet strings. Since re works on all
supported operating systems, it is now possible to run telnet sessions also on
platforms such as e.g. Windows (which was not the case with the previous rx
driver). Note that the rx driver is obsolete from now on, and will be removed
from Common Test after OTP R12B.
Own Id: OTP-7528

 Common_Test 1.3.3

 Improvements and New Features

	Various updates and improvements, plus some minor bug fixes, have been
implemented in Common Test and Test Server.
Own Id: OTP-7112

	It is now possible, by means of the new function ct:abort_current_testcase/1
or test_server_ctrl:abort_current_testcase/1, to abort the currently executing
test case.
Own Id: OTP-7518 Aux Id: OTP-7112

 Common_Test 1.3.2

 Improvements and New Features

	The configure test of the rx lib in Common Test was not performed during the
general OTP application configuration phase. This made e.g. autoconf
impossible. This has been changed to correspond with the normal OTP build
procedure.
Own Id: OTP-7379

 Common_Test 1.3.1

 Improvements and New Features

	The rx library, included with common_test, failed to build on some
architectures because the -fPIC compiler option was missing.
Own Id: OTP-7111

 common_test 1.3.0

Introduction

 Scope

Common Test is a portable application for automated testing. It is suitable
for:
	Black-box testing of target systems of any type (that is, not necessarily
implemented in Erlang). This is performed through standard O&M interfaces
(such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through
user-specific interfaces (often called test ports).
	White-box testing of Erlang/OTP programs. This is easily done by calling the
target API functions directly from the test case functions.

Common Test also integrates use of the OTP cover tool in application Tools
for code coverage analysis of Erlang/OTP programs.
Common Test executes test suite programs automatically, without operator
interaction. Test progress and results are printed to logs in HTML format,
easily browsed with a standard web browser. Common Test also sends
notifications about progress and results through an OTP event manager to event
handlers plugged in to the system. This way, users can integrate their own
programs for, for example, logging, database storing, or supervision with
Common Test.
Common Test provides libraries with useful support functions to fill various
testing needs and requirements. There is, for example, support for flexible test
declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different
target systems) running in parallel.

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

Common Test Basics

 General

The Common Test framework is a tool that supports implementation and automated
execution of test cases to any types of target systems. Common Test is the
main tool being used in all testing- and verification activities that are part
of Erlang/OTP system development and maintenance.
Test cases can be executed individually or in batches. Common Test also
features a distributed testing mode with central control and logging. With this
feature, multiple systems can be tested independently in one common session.
This is useful, for example, when running automated large-scale regression
tests.
The System Under Test (SUT) can consist of one or more target nodes.
Common Test contains a generic test server that, together with other test
utilities, is used to perform test case execution. The tests can be started from
a GUI, from the OS shell, or from an Erlang shell. Test suites are files
(Erlang modules) that contain the test cases (Erlang functions) to be
executed. Support modules provide functions that the test cases use to do the
tests.
In a black-box testing scenario, Common Test-based test programs connect to
the target system(s) through standard O&M and CLI protocols. Common Test
provides implementations of, and wrapper interfaces to, some of these protocols
(most of which exist as standalone components and applications in OTP). The
wrappers simplify configuration and add verbosity for logging purposes.
Common Test is continuously extended with useful support modules. However,
notice that it is a straightforward task to use any Erlang/OTP component for
testing purposes with Common Test, without needing a Common Test wrapper for
it. It is as simple as calling Erlang functions. A number of target-independent
interfaces are supported in Common Test, such as Generic Telnet and FTP. These
can be specialized or used directly for controlling instruments, traffic load
generators, and so on.
Common Test is also a very useful tool for white-box testing Erlang code (for
example, module testing), as the test programs can call exported Erlang
functions directly. There is very little overhead required for implementing
basic test suites and executing simple tests. For black-box testing Erlang
software, Erlang RPC and standard O&M interfaces can be used for example.
A test case can handle several connections to one or more target systems,
instruments, and traffic generators in parallel to perform the necessary actions
for a test. The handling of many connections in parallel is one of the major
strengths of Common Test, thanks to the efficient support for concurrency in
the Erlang runtime system, which Common Test users can take great advantage
of.

 Test Suite Organization

Test suites are organized in test directories and each test suite can have a
separate data directory. Typically, these files and directories are
version-controlled similar to other forms of source code (possibly by a version
control system like GIT or Subversion). However, Common Test does not itself
put any requirements on (or has any awareness of) possible file and directory
versions.

 Support Libraries

Support libraries contain functions that are useful for all test suites, or for
test suites in a specific functional area or subsystem. In addition to the
general support libraries provided by the Common Test framework, and the
various libraries and applications provided by Erlang/OTP, there can also be a
need for customized (user specific) support libraries.

 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual
test cases. A test suite is implemented as an Erlang module named
<suite_name>_SUITE.erl which contains a number of test cases. A test case is
an Erlang function that tests one or more things. The test case is the smallest
unit that the Common Test test server deals with.
Sets of test cases, called test case groups, can also be defined. A test case
group can have execution properties associated with it. Execution properties
specify if the test cases in the group are to be executed in random order, in
parallel, or in sequence, and if the execution of the group is to be repeated.
Test case groups can also be nested (that is, a group can, besides test cases,
contain subgroups).
Besides test cases and groups, the test suite can also contain configuration
functions. These functions are meant to be used for setting up (and verifying)
environment and state in the SUT (and/or the Common Test host node), required
for the tests to execute correctly. Examples of operations are: Opening a
connection to the SUT, initializing a database, running an installation script,
and so on. Configuration can be performed per suite, per test case group, and
per individual test case.
The test suite module must conform to a callback interface
specified by the Common Test test server. For details, see section
Writing Test Suites.
A test case is considered successful if it returns to the caller, no matter what
the returned value is. However, a few return values have special meaning as
follows:
	{skip,Reason} indicates that the test case is skipped.
	{comment,Comment} prints a comment in the log for the test case.
	{save_config,Config} makes the Common Test test server pass Config to
the next test case.

A test case failure is specified as a runtime error (a crash), no matter what
the reason for termination is. If you use Erlang pattern matching effectively,
you can take advantage of this property. The result is concise and readable test
case functions that look much more like scripts than actual programs. A simple
example:
session(_Config) ->
 {started,ServerId} = my_server:start(),
 {clients,[]} = my_server:get_clients(ServerId),
 MyId = self(),
 connected = my_server:connect(ServerId, MyId),
 {clients,[MyId]} = my_server:get_clients(ServerId),
 disconnected = my_server:disconnect(ServerId, MyId),
 {clients,[]} = my_server:get_clients(ServerId),
 stopped = my_server:stop(ServerId).
As a test suite runs, all information (including output to stdout) is recorded
in many different log files. A minimum of information is displayed in the user
console (only start and stop information, plus a note for each failed test
case).
The result from each test case is recorded in a dedicated HTML log file, created
for the particular test run. An overview page displays each test case
represented by a table row showing total execution time, if the case was
successful, failed, or skipped, plus an optional user comment. For a failed test
case, the reason for termination is also printed in the comment field. The
overview page has a link to each test case log file, providing simple navigation
with any standard HTML browser.
Note
In the last row where totals are presented the time shown here is a sum of
rows, which are above (not accounting for parallel testcases).
On the other hand "Elapsed Time" is a clock time spent to run testcases.

 External Interfaces

The Common Test test server requires that the test suite defines and exports
the following mandatory or optional callback functions:
	all() - Returns a list of all test cases and groups in the suite.
(Mandatory)

	suite() - Information function used to return properties for the suite.
(Optional)

	groups() - For declaring test case groups. (Optional)

	init_per_suite(Config) - Suite level configuration function, executed
before the first test case. (Optional)

	end_per_suite(Config) - Suite level configuration function, executed
after the last test case. (Optional)

	group(GroupName) - Information function used to return properties for a
test case group. (Optional)

	init_per_group(GroupName, Config) - Configuration function for a group,
executed before the first test case. (Optional)

	end_per_group(GroupName, Config) - Configuration function for a group,
executed after the last test case. (Optional)

	init_per_testcase(TestCase, Config) - Configuration function for a
testcase, executed before each test case. (Optional)

	end_per_testcase(TestCase, Config) - Configuration function for a
testcase, executed after each test case. (Optional)

For each test case, the Common Test test server expects the following
functions:
	Testcasename() - Information function that returns a list of test case
properties. (Optional)

	Testcasename(Config) - The test case function.

Getting Started

 Introduction for Newcomers

The purpose of this section is to let the newcomer get started in quickly
writing and executing some first simple tests with a "learning by example"
approach. Most explanations are left for later sections. If you are not much
into "learning by example" and prefer more technical details, go ahead and skip
to the next section.
This section demonstrates how simple it is to write a basic (yet for many module
testing purposes, often sufficiently complex) test suite and execute its test
cases. This is not necessarily obvious when you read the remaining sections in
this User's Guide.
Note
To understand what is discussed and examplified here, we recommended you to
first read section Common Test Basics.

 Test Case Execution

Execution of test cases is handled as follows:
[image: Successful and Unsuccessful Test Case Execution]
For each test case that Common Test is ordered to execute, it spawns a
dedicated process on which the test case function starts running. (In parallel
to the test case process, an idle waiting timer process is started, which is
linked to the test case process. If the timer process runs out of waiting time,
it sends an exit signal to terminate the test case process. This is called a
timetrap).
In scenario 1, the test case process terminates normally after case A has
finished executing its test code without detecting any errors. The test case
function returns a value and Common Test logs the test case as successful.
In scenario 2, an error is detected during test case B execution. This causes
the test case B function to generate an exception and, as a result, the test
case process exits with reason other than normal. Common Test logs this as an
unsuccessful (Failed) test case.
As you can understand from the illustration, Common Test requires a test case
to generate a runtime error to indicate failure (for example, by causing a bad
match error or by calling exit/1, preferably through the help
function ct:fail/1,2). A successful execution is indicated by a
normal return from the test case function.

 A Simple Test Suite

As shown in section Common Test Basics,
the test suite module implements callback functions (mandatory
or optional) for various purposes, for example:
	Init/end configuration function for the test suite
	Init/end configuration function for a test case
	Init/end configuration function for a test case group
	Test cases

The configuration functions are optional. The following example is a test suite
without configuration functions, including one simple test case, to check that
module mymod exists (that is, can be successfully loaded by the code server):
-module(my1st_SUITE).
-compile(export_all).

all() ->
 [mod_exists].

mod_exists(_) ->
 {module,mymod} = code:load_file(mymod).
If the operation fails, a bad match error occurs that terminates the test case.

 A Test Suite with Configuration Functions

If you need to perform configuration operations to run your test, you can
implement configuration functions in your suite. The result from a configuration
function is configuration data, or Config. This is a list of key-value tuples
that get passed from the configuration function to the test cases (possibly
through configuration functions on "lower level"). The data flow looks as
follows:
[image: Configuration Data Flow in a Suite]
The following example shows a test suite that uses configuration functions to
open and close a log file for the test cases (an operation that is unnecessary
and irrelevant to perform by each test case):
-module(check_log_SUITE).
-export([all/0, init_per_suite/1, end_per_suite/1]).
-export([check_restart_result/1, check_no_errors/1]).

-define(value(Key,Config), proplists:get_value(Key,Config)).

all() -> [check_restart_result, check_no_errors].

init_per_suite(InitConfigData) ->
 [{logref,open_log()} | InitConfigData].

end_per_suite(ConfigData) ->
 close_log(?value(logref, ConfigData)).

check_restart_result(ConfigData) ->
 TestData = read_log(restart, ?value(logref, ConfigData)),
 {match,_Line} = search_for("restart successful", TestData).

check_no_errors(ConfigData) ->
 TestData = read_log(all, ?value(logref, ConfigData)),
 case search_for("error", TestData) of
 {match,Line} -> ct:fail({error_found_in_log,Line});
 nomatch -> ok
 end.
The test cases verify, by parsing a log file, that our SUT has performed a
successful restart and that no unexpected errors are printed.
To execute the test cases in the recent test suite, type the following on the
UNIX/Linux command line (assuming that the suite module is in the current
working directory):
$ ct_run -dir .
or:
$ ct_run -suite check_log_SUITE
To use the Erlang shell to run our test, you can evaluate the following call:
1> ct:run_test([{dir, "."}]).
or:
1> ct:run_test([{suite, "check_log_SUITE"}]).
The result from running the test is printed in log files in HTML format (stored
in unique log directories on a different level). The following illustration
shows the log file structure:
[image: HTML Log File Structure]

 Questions and Answers

Here follows some questions that you might have after reading this section with
corresponding tips and links to the answers:
	Question: "How and where can I specify variable data for my tests that must
not be hard-coded in the test suites (such as hostnames, addresses, and user
login data)?"
Answer: See section
External Configuration Data.

	Question: "Is there a way to declare different tests and run them in one
session without having to write my own scripts? Also, can such declarations be
used for regression testing?"
Answer: See section
Test Specifications in section
Running Tests and Analyzing Results.

	Question: "Can test cases and/or test runs be automatically repeated?"
Answer: Learn more about
Test Case Groups and read about
start flags/options in section Running Tests and
in the Reference Manual.

	Question: "Does Common Test execute my test cases in sequence or in
parallel?"
Answer: See Test Case Groups in
section Writing Test Suites.

	Question: "What is the syntax for timetraps (mentioned earlier), and how do
I set them?"
Answer: This is explained in the
Timetrap Time-Outs part of section Writing
Test Suites.

	Question: "What functions are available for logging and printing?"
Answer: See Logging in section Writing Test
Suites.

	Question: "I need data files for my tests. Where do I store them
preferably?"
Answer: See
Data and Private Directories.

	Question: "Can I start with a test suite example, please?"
Answer: Welcome!

You probably want to get started on your own first test suites now, while at the
same time digging deeper into the Common Test User's Guide and Reference
Manual. There are much more to learn about the things that have been introduced
in this section. There are also many other useful features to learn, so please
continue to the other sections and have fun.

Installation

 General Information

The two main interfaces for running tests with Common Test are an executable
program named ct_run and the Erlang module ct. ct_run
is compiled for the underlying operating system (for example, Unix/Linux or
Windows) during the build of the Erlang/OTP system, and is installed
automatically with other executable programs in the top level bin directory of
Erlang/OTP. The ct interface functions can be called from the Erlang shell, or
from any Erlang function, on any supported platform.
The Common Test application is installed with the Erlang/OTP system. No extra
installation step is required to start using Common Test through the ct_run
executable program, and/or the interface functions in the ct module.

Writing Test Suites

 Support for Test Suite Authors

The ct module provides the main interface for writing test cases. This
includes for example, the following:
	Functions for printing and logging
	Functions for reading configuration data
	Function for terminating a test case with error reason
	Function for adding comments to the HTML overview page

For details about these functions, see module ct.
The Common Test application also includes other modules named
ct_<component>, which provide various support, mainly simplified use of
communication protocols such as RPC, SNMP, FTP, Telnet, and others.

 Test Suites

A test suite is an ordinary Erlang module that contains test cases. It is
recommended that the module has a name on the form *_SUITE.erl. Otherwise, the
directory and auto compilation function in Common Test cannot locate it (at
least not by default).
It is also recommended that the ct.hrl header file is included in all test
suite modules.
Each test suite module must export function all/0, which
returns the list of all test case groups and test cases to be executed in that
module.
The callback functions to be implemented by the test suite are all listed in
module ct_suite . They are also described in more detail later
in this User's Guide.

 Init and End per Suite

Each test suite module can contain the optional configuration functions
init_per_suite/1 and
end_per_suite/1. If the init function is
defined, so must the end function be.
If init_per_suite exists, it is called initially before the test cases are
executed. It typically contains initializations common for all test cases in the
suite, which are only to be performed once. init_per_suite is recommended for
setting up and verifying state and environment on the System Under Test (SUT) or
the Common Test host node, or both, so that the test cases in the suite
executes correctly. The following are examples of initial configuration
operations:
	Opening a connection to the SUT
	Initializing a database
	Running an installation script

end_per_suite is called as the final stage of the test suite execution (after
the last test case has finished). The function is meant to be used for cleaning
up after init_per_suite.
init_per_suite and end_per_suite execute on dedicated Erlang processes, just
like the test cases do. The result of these functions is however not included in
the test run statistics of successful, failed, and skipped cases.
The argument to init_per_suite is Config, that is, the same key-value list
of runtime configuration data that each test case takes as input argument.
init_per_suite can modify this parameter with information that the test cases
need. The possibly modified Config list is the return value of the function.
If init_per_suite fails, all test cases in the test suite are skipped
automatically (so called auto skipped), including end_per_suite.
Notice that if init_per_suite and end_per_suite do not exist in the suite,
Common Test calls dummy functions (with the same names) instead, so that
output generated by hook functions can be saved to the log files for these
dummies. For details, see Common Test Hooks.

 Init and End per Test Case

Each test suite module can contain the optional configuration functions
init_per_testcase/2 and
end_per_testcase/2. If the init function is
defined, so must the end function be.
If init_per_testcase exists, it is called before each test case in the suite.
It typically contains initialization that must be done for each test case
(analog to init_per_suite for the suite).
end_per_testcase/2 is called after each test case has finished, enabling
cleanup after init_per_testcase.
Note
If end_per_testcase crashes, however, test results are unaffected. At the
same time, this occurrence is reported in the test execution logs.

The first argument to these functions is the name of the test case. This value
can be used with pattern matching in function clauses or conditional expressions
to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.
The second argument is the Config key-value list of runtime configuration
data, which has the same value as the list returned by init_per_suite.
init_per_testcase/2 can modify this parameter or return it "as is". The return
value of init_per_testcase/2 is passed as parameter Config to the test case
itself.
The return value of end_per_testcase/2 is ignored by the test server, with
exception of the save_config and fail
tuple.
end_per_testcase can check if the test case was successful. (which in turn can
determine how cleanup is to be performed). This is done by reading the value
tagged with tc_status from Config. The value is one of the following:
	ok

	{failed,Reason}
where Reason is timetrap_timeout, information from exit/1,
or details of a runtime error

	{skipped,Reason}
where Reason is a user-specific term

Function end_per_testcase/2 is even called if a test case terminates because
of a call to ct:abort_current_testcase/1, or after a timetrap time-out.
However, end_per_testcase then executes on a different process than the test
case function. In this situation, end_per_testcase cannot change the reason
for test case termination by returning {fail,Reason} or save data with
{save_config,Data}.
The test case is skipped in the following two cases:
	If init_per_testcase crashes (called auto skipped).
	If init_per_testcase returns a tuple {skip,Reason} (called user
skipped).

The test case can also be marked as failed without executing it by returning a
tuple {fail,Reason} from init_per_testcase.
Note
If init_per_testcase crashes, or returns {skip,Reason} or {fail,Reason},
function end_per_testcase is not called.

If it is determined during execution of end_per_testcase that the status of a
successful test case is to be changed to failed, end_per_testcase can return
the tuple {fail,Reason} (where Reason describes why the test case fails).
As init_per_testcase and end_per_testcase execute on the same Erlang process
as the test case, printouts from these configuration functions are included in
the test case log file.

 Test Cases

The smallest unit that the test server is concerned with is a test case. Each
test case can test many things, for example, make several calls to the same
interface function with different parameters.
The author can choose to put many or few tests into each test case. Some things
to keep in mind follows:
	Many small test cases tend to result in extra, and possibly duplicated code,
as well as slow test execution because of large overhead for initializations
and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and
understand, and expensive to maintain.
	Larger test cases make it harder to tell what went wrong if it fails. Also,
large portions of test code risk being skipped when errors occur.
	Readability and maintainability suffer when test cases become too large and
extensive. It is not certain that the resulting log files reflect very well
the number of tests performed.

The test case function takes one argument, Config, which contains
configuration information such as data_dir and priv_dir. (For details about
these, see section
Data and Private Directories. The value
of Config at the time of the call, is the same as the return value from
init_per_testcase, mentioned earlier.
Note
The test case function argument Config is not to be confused with the
information that can be retrieved from the configuration files (using
ct:get_config/1/2). The test case argument Config is
to be used for runtime configuration of the test suite and the test cases,
while configuration files are to contain data related to the SUT. These two
types of configuration data are handled differently.

As parameter Config is a list of key-value tuples, that is, a data type called
a property list, it can be handled by the proplists module. A value can, for
example, be searched for and returned with function proplists:get_value/2.
Also, or alternatively, the general lists module contains useful functions.
Normally, the only operations performed on Config are insertion (adding a
tuple to the head of the list) and lookup. To look up a value in the config,
proplists:get_value can be used. For example:
PrivDir = proplists:get_value(priv_dir, Config).
The test case result can be customized in several ways. See the manual for
Module:Testcase/1 in the ct_suite module for
details.

 Test Case Information Function

For each test case function there can be an extra function with the same name
but without arguments. This is the test case information function. It is
expected to return a list of tagged tuples that specifies various properties
regarding the test case.
The following tags have special meaning:
	timetrap - Sets the maximum time the test case is allowed to execute. If
this time is exceeded, the test case fails with reason timetrap_timeout.
Notice that init_per_testcase and end_per_testcase are included in the
timetrap time. For details, see section
Timetrap Time-Outs.

	userdata - Specifies any data related to the test case. This data can be
retrieved at any time using the ct:userdata/3 utility function.

	silent_connections - For details, see section
Silent Connections.

	require - Specifies configuration variables required by the test case.
If the required configuration variables are not found in any of the test
system configuration files, the test case is skipped.
A required variable can also be given a default value to be used if the
variable is not found in any configuration file. To specify a default value,
add a tuple on the form {default_config,ConfigVariableName,Value} to the
test case information list (the position in the list is irrelevant).
Examples:
testcase1() ->
 [{require, ftp},
 {default_config, ftp, [{ftp, "my_ftp_host"},
 {username, "aladdin"},
 {password, "sesame"}]}}].
testcase2() ->
 [{require, unix_telnet, unix},
 {require, {unix, [telnet, username, password]}},
 {default_config, unix, [{telnet, "my_telnet_host"},
 {username, "aladdin"},
 {password, "sesame"}]}}].

For more information about require, see section
Requiring and Reading Configuration Data
in section External Configuration Data and function
ct:require/1/2.
Note
Specifying a default value for a required variable can result in a test case
always getting executed. This might not be a desired behavior.

If timetrap or require, or both, is not set specifically for a particular
test case, default values specified by function
suite/0 are used.
Tags other than the earlier mentioned are ignored by the test server.
An example of a test case information function follows:
reboot_node() ->
 [
 {timetrap,{seconds,60}},
 {require,interfaces},
 {userdata,
 [{description,"System Upgrade: RpuAddition Normal RebootNode"},
 {fts,"http://someserver.ericsson.se/test_doc4711.pdf"}]}
].

 Test Suite Information Function

Function suite/0 can, for example, be used in a test
suite module to set a default timetrap value and to require external
configuration data. If a test case, or a group information function also
specifies any of the information tags, it overrides the default values set by
suite/0. For details, see
Test Case Information Function and
Test Case Groups.
The following options can also be specified with the suite information list:
	stylesheet, see HTML Style Sheets
	userdata, see
Test Case Information Function
	silent_connections, see
Silent Connections

An example of the suite information function follows:
suite() ->
 [
 {timetrap,{minutes,10}},
 {require,global_names},
 {userdata,[{info,"This suite tests database transactions."}]},
 {silent_connections,[telnet]},
 {stylesheet,"db_testing.css"}
].

 Test Case Groups

A test case group is a set of test cases sharing configuration functions and
execution properties. Test case groups are defined by function
groups/0 that should return a term having the
following syntax:
groups() -> GroupDefs

Types:

GroupDefs = [GroupDef]
GroupDef = {GroupName,Properties,GroupsAndTestCases}
GroupName = atom()
GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase |
 {testcase,TestCase,TCRepeatProps}]
TestCase = atom()
TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]
GroupName is the name of the group and must be unique within the test suite
module. Groups can be nested, by including a group definition within the
GroupsAndTestCases list of another group. Properties is the list of
execution properties for the group. The possible values are as follows:
Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]
Shuffle = shuffle | {shuffle,Seed}
Seed = {integer(),integer(),integer()}
GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
 repeat_until_any_ok | repeat_until_any_fail
N = integer() | forever
Explanations:
	parallel - Common Test executes all test cases in the group in
parallel.

	sequence - The cases are executed in a sequence as described in section
Sequences in section Dependencies Between
Test Cases and Suites.

	shuffle - The cases in the group are executed in random order.

	repeat, repeat_until_* - Orders Common Test to repeat execution of all
the cases in the group a given number of times, or until any, or all, cases
fail or succeed.

Example:
groups() -> [{group1, [parallel], [test1a,test1b]},
 {group2, [shuffle,sequence], [test2a,test2b,test2c]}].
To specify in which order groups are to be executed (also with respect to test
cases that are not part of any group), add tuples on the form
{group,GroupName} to the all/0 list.
Example:
all() -> [testcase1, {group,group1}, {testcase,testcase2,[{repeat,10}]}, {group,group2}].
Execution properties with a group tuple in all/0:
{group,GroupName,Properties} can also be specified. These properties override
those specified in the group definition (see groups/0 earlier). This way, the
same set of tests can be run, but with different properties, without having to
make copies of the group definition in question.
If a group contains subgroups, the execution properties for these can also be
specified in the group tuple: {group,GroupName,Properties,SubGroups} Where,
SubGroups is a list of tuples, {GroupName,Properties} or
{GroupName,Properties,SubGroups} representing the subgroups. Any subgroups
defined in groups/0 for a group, that are not specified in the SubGroups
list, executes with their predefined properties.
Example:
groups() -> [{tests1, [], [{tests2, [], [t2a,t2b]},
 {tests3, [], [t31,t3b]}]}].
To execute group tests1 twice with different properties for tests2 each
time:
all() ->
 [{group, tests1, default, [{tests2, [parallel]}]},
 {group, tests1, default, [{tests2, [shuffle,{repeat,10}]}]}].
This is equivalent to the following specification:
all() ->
 [{group, tests1, default, [{tests2, [parallel]},
 {tests3, default}]},
 {group, tests1, default, [{tests2, [shuffle,{repeat,10}]},
 {tests3, default}]}].
Value default states that the predefined properties are to be used.
The following example shows how to override properties in a scenario with deeply
nested groups:
groups() ->
 [{tests1, [], [{group, tests2}]},
 {tests2, [], [{group, tests3}]},
 {tests3, [{repeat,2}], [t3a,t3b,t3c]}].

all() ->
 [{group, tests1, default,
 [{tests2, default,
 [{tests3, [parallel,{repeat,100}]}]}]}].
For ease of readability, all syntax definitions can be replaced by a function
call whose return value should match the expected syntax case.
Example:
all() ->
 [{group, tests1, default, test_cases()},
 {group, tests1, default, [shuffle_test(),
 {tests3, default}]}].
test_cases() ->
 [{tests2, [parallel]}, {tests3, default}].

shuffle_test() ->
 {tests2, [shuffle,{repeat,10}]}.
The described syntax can also be used in test specifications to change group
properties at the time of execution, without having to edit the test suite. For
more information, see section
Test Specifications in section
Running Tests and Analyzing Results.
As illustrated, properties can be combined. If, for example, shuffle,
repeat_until_any_fail, and sequence are all specified, the test cases in the
group are executed repeatedly, and in random order, until a test case fails.
Then execution is immediately stopped and the remaining cases are skipped.
Before execution of a group begins, the configuration function
init_per_group(GroupName, Config) is called.
The list of tuples returned from this function is passed to the test cases in
the usual manner by argument Config. init_per_group/2 is meant to be used
for initializations common for the test cases in the group. After execution of
the group is finished, function
end_per_group(GroupName, Config) is called.
This function is meant to be used for cleaning up after init_per_group/2. If
the init function is defined, so must the end function be.
Whenever a group is executed, if init_per_group and end_per_group do not
exist in the suite, Common Test calls dummy functions (with the same names)
instead. Output generated by hook functions are saved to the log files for these
dummies. For more information, see section
Manipulating Tests in section Common Test
Hooks.
Note
init_per_testcase/2 and end_per_testcase/2 are always called for each
individual test case, no matter if the case belongs to a group or not.

The properties for a group are always printed in the top of the HTML log for
init_per_group/2. The total execution time for a group is included at the
bottom of the log for end_per_group/2.
Test case groups can be nested so sets of groups can be configured with the same
init_per_group/2 and end_per_group/2 functions. Nested groups can be defined
by including a group definition, or a group name reference, in the test case
list of another group.
Example:
groups() -> [{group1, [shuffle], [test1a,
 {group2, [], [test2a,test2b]},
 test1b]},
 {group3, [], [{group,group4},
 {group,group5}]},
 {group4, [parallel], [test4a,test4b]},
 {group5, [sequence], [test5a,test5b,test5c]}].
In the previous example, if all/0 returns group name references in the order
[{group,group1},{group,group3}], the order of the configuration functions and
test cases becomes the following (notice that init_per_testcase/2 and
end_per_testcase/2: are also always called, but not included in this example
for simplification):
init_per_group(group1, Config) -> Config1 (*)
 test1a(Config1)
 init_per_group(group2, Config1) -> Config2
 test2a(Config2), test2b(Config2)
 end_per_group(group2, Config2)
 test1b(Config1)
end_per_group(group1, Config1)
init_per_group(group3, Config) -> Config3
 init_per_group(group4, Config3) -> Config4
 test4a(Config4), test4b(Config4) (**)
 end_per_group(group4, Config4)
 init_per_group(group5, Config3) -> Config5
 test5a(Config5), test5b(Config5), test5c(Config5)
 end_per_group(group5, Config5)
end_per_group(group3, Config3)
(*) The order of test case test1a, test1b, and group2 is undefined, as
group1 has a shuffle property.
(**) These cases are not executed in order, but in parallel.
Properties are not inherited from top-level groups to nested subgroups. For
instance, in the previous example, the test cases in group2 are not executed
in random order (which is the property of group1).

 Parallel Property and Nested Groups

If a group has a parallel property, its test cases are spawned simultaneously
and get executed in parallel. However, a test case is not allowed to execute in
parallel with end_per_group/2, which means that the time to execute a parallel
group is equal to the execution time of the slowest test case in the group. A
negative side effect of running test cases in parallel is that the HTML summary
pages are not updated with links to the individual test case logs until function
end_per_group/2 for the group has finished.
A group nested under a parallel group starts executing in parallel with previous
(parallel) test cases (no matter what properties the nested group has). However,
as test cases are never executed in parallel with init_per_group/2 or
end_per_group/2 of the same group, it is only after a nested group has
finished that remaining parallel cases in the previous group become spawned.

 Parallel Test Cases and I/O

A parallel test case has a private I/O server as its group leader. (For a
description of the group leader concept, see ERTS). The
central I/O server process, which handles the output from regular test cases and
configuration functions, does not respond to I/O messages during execution of
parallel groups. This is important to understand to avoid certain traps, like
the following:
If a process, P, is spawned during execution of, for example,
init_per_suite/1, it inherits the group leader of the init_per_suite
process. This group leader is the central I/O server process mentioned earlier.
If, at a later time, during parallel test case execution, some event triggers
process P to call io:format/1/2, that call never returns
(as the group leader is in a non-responsive state) and causes P to hang.

 Repeated Groups

A test case group can be repeated a certain number of times (specified by an
integer) or indefinitely (specified by forever). The repetition can also be
stopped too early if any or all cases fail or succeed, that is, if any of the
properties repeat_until_any_fail, repeat_until_any_ok,
repeat_until_all_fail, or repeat_until_all_ok is used. If the basic repeat
property is used, status of test cases is irrelevant for the repeat operation.
The status of a subgroup can be returned (ok or failed), to affect the
execution of the group on the level above. This is accomplished by, in
end_per_group/2, looking up the value of tc_group_properties in the Config
list and checking the result of the test cases in the group. If status failed
is to be returned from the group as a result, end_per_group/2 is to return the
value {return_group_result,failed}. The status of a subgroup is taken into
account by Common Test when evaluating if execution of a group is to be
repeated or not (unless the basic repeat property is used).
The value of tc_group_properties is a list of status tuples, each with the key
ok, skipped, and failed. The value of a status tuple is a list with names
of test cases that have been executed with the corresponding status as result.
The following is an example of how to return the status from a group:
end_per_group(_Group, Config) ->
 Status = proplists:get_value(tc_group_result, Config),
 case proplists:get_value(failed, Status) of
 [] -> % no failed cases
 {return_group_result,ok};
 _Failed -> % one or more failed
 {return_group_result,failed}
 end.
It is also possible, in end_per_group/2, to check the status of a subgroup
(maybe to determine what status the current group is to return). This is as
simple as illustrated in the previous example, only the group name is stored in
a tuple {group_result,GroupName}, which can be searched for in the status
lists.
Example:
end_per_group(group1, Config) ->
 Status = proplists:get_value(tc_group_result, Config),
 Failed = proplists:get_value(failed, Status),
 case lists:member({group_result,group2}, Failed) of
 true ->
 {return_group_result,failed};
 false ->
 {return_group_result,ok}
 end;
...
Note
When a test case group is repeated, the configuration functions
init_per_group/2 and end_per_group/2 are also always called with each
repetition.

 Shuffled Test Case Order

The order in which test cases in a group are executed is under normal
circumstances the same as the order specified in the test case list in the group
definition. With property shuffle set, however, Common Test instead executes
the test cases in random order.
You can provide a seed value (a tuple of three integers) with the shuffle
property {shuffle,Seed}. This way, the same shuffling order can be created
every time the group is executed. If no seed value is specified, Common Test
creates a "random" seed for the shuffling operation (using the return value of
erlang:timestamp/0). The seed value is always printed to the
init_per_group/2 log file so that it can be used to recreate the same
execution order in a subsequent test run.
Note
If a shuffled test case group is repeated, the seed is not reset between
turns.

If a subgroup is specified in a group with a shuffle property, the execution
order of this subgroup in relation to the test cases (and other subgroups) in
the group, is random. The order of the test cases in the subgroup is however not
random (unless the subgroup has a shuffle property).

 Group Information Function

The test case group information function, group(GroupName), serves the same
purpose as the suite- and test case information functions previously described.
However, the scope for the group information function, is all test cases and
subgroups in the group in question (GroupName).
Example:
group(connection_tests) ->
 [{require,login_data},
 {timetrap,1000}].
The group information properties override those set with the suite information
function, and can in turn be overridden by test case information properties. For
a list of valid information properties and more general information, see the
Test Case Information Function.

 Information Functions for Init- and End-Configuration

Information functions can also be used for functions init_per_suite,
end_per_suite, init_per_group, and end_per_group, and they work the same
way as with the
Test Case Information Function. This is
useful, for example, for setting timetraps and requiring external configuration
data relevant only for the configuration function in question (without affecting
properties set for groups and test cases in the suite).
The information function init/end_per_suite() is called for
init/end_per_suite(Config), and information function
init/end_per_group(GroupName) is called for
init/end_per_group(GroupName,Config). However, information functions cannot be
used with init/end_per_testcase(TestCase, Config), as these configuration
functions execute on the test case process and use the same properties as the
test case (that is, the properties set by the test case information function,
TestCase()). For a list of valid information properties and more general
information, see the
Test Case Information Function.

 Data and Private Directories

In the data directory, data_dir, the test module has its own files needed for
the testing. The name of data_dir is the name of the test suite followed by
"_data". For example, "some_path/foo_SUITE.beam" has the data directory
"some_path/foo_SUITE_data/". Use this directory for portability, that is, to
avoid hardcoding directory names in your suite. As the data directory is stored
in the same directory as your test suite, you can rely on its existence at
runtime, even if the path to your test suite directory has changed between test
suite implementation and execution.
priv_dir is the private directory for the test cases. This directory can be
used whenever a test case (or configuration function) needs to write something
to file. The name of the private directory is generated by Common Test, which
also creates the directory.
By default, Common Test creates one central private directory per test run,
shared by all test cases. This is not always suitable. Especially if the same
test cases are executed multiple times during a test run (that is, if they
belong to a test case group with property repeat) and there is a risk that
files in the private directory get overwritten. Under these circumstances,
Common Test can be configured to create one dedicated private directory per
test case and execution instead. This is accomplished with the flag/option
create_priv_dir (to be used with the ct_run program, the
ct:run_test/1 function, or as test specification term). There are three
possible values for this option as follows:
	auto_per_run
	auto_per_tc
	manual_per_tc

The first value indicates the default priv_dir behavior, that is, one private
directory created per test run. The two latter values tell Common Test to
generate a unique test directory name per test case and execution. If the auto
version is used, all private directories are created automatically. This can
become very inefficient for test runs with many test cases or repetitions, or
both. Therefore, if the manual version is used instead, the test case must tell
Common Test to create priv_dir when it needs it. It does this by calling the
function ct:make_priv_dir/0.
Note
Do not depend on the current working directory for reading and writing data
files, as this is not portable. All scratch files are to be written in the
priv_dir and all data files are to be located in data_dir. Also, the
Common Test server sets the current working directory to the test case log
directory at the start of every case.

 Execution Environment

Each test case is executed by a dedicated Erlang process. The process is spawned
when the test case starts, and terminated when the test case is finished. The
configuration functions init_per_testcase and end_per_testcase execute on
the same process as the test case.
The configuration functions init_per_suite and end_per_suite execute, like
test cases, on dedicated Erlang processes.

 Timetrap Time-Outs

The default time limit for a test case is 30 minutes, unless a timetrap is
specified either by the suite-, group-, or test case information function. The
timetrap time-out value defined by suite/0 is the value that is used for each
test case in the suite (and for the configuration functions init_per_suite/1,
end_per_suite/1, init_per_group/2, and end_per_group/2). A timetrap value
defined by group(GroupName) overrides one defined by suite() and is used for
each test case in group GroupName, and any of its subgroups. If a timetrap
value is defined by group/1 for a subgroup, it overrides that of its higher
level groups. Timetrap values set by individual test cases (by the test case
information function) override both group- and suite- level timetraps.
A timetrap can also be set or reset dynamically during the execution of a test
case, or configuration function. This is done by calling ct:timetrap/1. This
function cancels the current timetrap and starts a new one (that stays active
until time-out, or end of the current function).
Timetrap values can be extended with a multiplier value specified at startup
with option multiply_timetraps. It is also possible to let the test server
decide to scale up timetrap time-out values automatically. That is, if tools
such as cover or trace are running during the test. This feature is disabled
by default and can be enabled with start option scale_timetraps.
If a test case needs to suspend itself for a time that also gets multiplied by
multiply_timetraps (and possibly also scaled up if scale_timetraps is
enabled), the function ct:sleep/1 can be used (instead of, for example,
timer:sleep/1).
A function (fun/0 or {Mod,Func,Args} (MFA) tuple) can be specified as
timetrap value in the suite-, group- and test case information function, and as
argument to function ct:timetrap/1.
Examples:
{timetrap,{my_test_utils,timetrap,[?MODULE,system_start]}}
ct:timetrap(fun() -> my_timetrap(TestCaseName, Config) end)
The user timetrap function can be used for two things as follows:
	To act as a timetrap. The time-out is triggered when the function returns.
	To return a timetrap time value (other than a function).

Before execution of the timetrap function (which is performed on a parallel,
dedicated timetrap process), Common Test cancels any previously set timer for
the test case or configuration function. When the timetrap function returns, the
time-out is triggered, unless the return value is a valid timetrap time, such
as an integer, or a {SecMinOrHourTag,Time} tuple (for details, see module
ct_suite). If a time value is returned, a new timetrap is started to
generate a time-out after the specified time.
The user timetrap function can return a time value after a delay. The effective
timetrap time is then the delay time plus the returned time.

 Logging - Categories and Verbosity Levels

Common Test provides the following three main functions for printing strings:
	ct:log(Category, Importance, Format, FormatArgs, Opts)
	ct:print(Category, Importance, Format, FormatArgs)
	ct:pal(Category, Importance, Format, FormatArgs)

The log/1,2,3,4,5 function prints a string to the test case log
file. The print/1,2,3,4 function prints the string to screen.
The pal/1,2,3,4 function prints the same string both to file and
screen. The functions are described in module ct.
The optional Category argument can be used to categorize the log printout.
Categories can be used for two things as follows:
	To compare the importance of the printout to a specific verbosity level.
	To format the printout according to a user-specific HTML Style Sheet (CSS).

Argument Importance specifies a level of importance that, compared to a
verbosity level (general and/or set per category), determines if the printout is
to be visible. Importance is any integer in the range 0..99. Predefined
constants exist in the ct.hrl header file. The default importance level,
?STD_IMPORTANCE (used if argument Importance is not provided), is 50. This
is also the importance used for standard I/O, for example, from printouts made
with io:format/2, io:put_chars/1, and so on.
Importance is compared to a verbosity level set by the verbosity start
flag/option. The level can be set per category or generally, or both. If
verbosity is not set by the user, a level of 100 (?MAX_VERBOSITY = all
printouts visible) is used as default value. Common Test performs the
following test:
Importance >= (100-VerbosityLevel)
The constant ?STD_VERBOSITY has value 50 (see ct.hrl). At this level, all
standard I/O gets printed. If a lower verbosity level is set, standard I/O
printouts are ignored. Verbosity level 0 effectively turns all logging off
(except from printouts made by Common Test itself).
The general verbosity level is not associated with any particular category. This
level sets the threshold for the standard I/O printouts, uncategorized
ct:log/print/pal printouts, and printouts for categories with undefined
verbosity level.
Examples:
Some printouts during test case execution:
io:format("1. Standard IO, importance = ~w~n", [?STD_IMPORTANCE]),
ct:log("2. Uncategorized, importance = ~w", [?STD_IMPORTANCE]),
 ct:log(info, "3. Categorized info, importance = ~w", [?STD_IMPORTANCE]),
 ct:log(info, ?LOW_IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW_IMPORTANCE]),
 ct:log(error, ?HI_IMPORTANCE, "5. Categorized error, importance = ~w", [?HI_IMPORTANCE]),
 ct:log(error, ?MAX_IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX_IMPORTANCE]),
If starting the test with a general verbosity level of 50 (?STD_VERBOSITY):
$ ct_run -verbosity 50
the following is printed:
1. Standard IO, importance = 50
2. Uncategorized, importance = 50
3. Categorized info, importance = 50
5. Categorized error, importance = 75
6. Categorized error, importance = 99
If starting the test with:
$ ct_run -verbosity 1 and info 75
the following is printed:
3. Categorized info, importance = 50
4. Categorized info, importance = 25
6. Categorized error, importance = 99
Note that the category argument is not required in order to only specify the
importance of a printout. Example:
ct:pal(?LOW_IMPORTANCE, "Info report: ~p", [Info])
Or perhaps in combination with constants:
-define(INFO, ?LOW_IMPORTANCE).
-define(ERROR, ?HI_IMPORTANCE).

ct:log(?INFO, "Info report: ~p", [Info])
ct:pal(?ERROR, "Error report: ~p", [Error])
The functions ct:set_verbosity/2 and ct:get_verbosity/1 may be used to
modify and read verbosity levels during test execution.
The arguments Format and FormatArgs in ct:log/print/pal are always passed
on to the STDLIB function io:format/3 (For details, see the io manual
page).
ct:pal/4 and ct:log/5 add headers to strings being printed to the log file.
The strings are also wrapped in div tags with a CSS class attribute, so that
stylesheet formatting can be applied. To disable this feature for a printout
(i.e. to get a result similar to using io:format/2), call ct:log/5 with the
no_css option.
How categories can be mapped to CSS tags is documented in section
HTML Style Sheets in section Running
Tests and Analyzing Results.
Common Test will escape special HTML characters (<, > and &) in printouts to the
log file made with ct:pal/4 and io:format/2. In order to print strings with
HTML tags to the log, use the ct:log/3,4,5 function. The character escaping
feature is per default disabled for ct:log/3,4,5 but can be enabled with the
esc_chars option in the Opts list, see ct:log/3,4,5.
If the character escaping feature needs to be disabled (typically for backwards
compatibility reasons), use the ct_run start flag -no_esc_chars, or the
ct:run_test/1 start option {esc_chars,Bool} (this start option is also
supported in test specifications).
For more information about log files, see section
Log Files in section Running Tests and
Analyzing Results.

 Illegal Dependencies

Even though it is highly efficient to write test suites with the Common Test
framework, mistakes can be made, mainly because of illegal dependencies. Some of
the more frequent mistakes from our own experience with running the Erlang/OTP
test suites follows:
	Depending on current directory, and writing there:
This is a common error in test suites. It is assumed that the current
directory is the same as the author used as current directory when the test
case was developed. Many test cases even try to write scratch files to this
directory. Instead data_dir and priv_dir are to be used to locate data and
for writing scratch files.

	Depending on execution order:
During development of test suites, make no assumptions on the execution order
of the test cases or suites. For example, a test case must not assume that a
server it depends on is already started by a previous test case. Reasons for
this follows:
	The user/operator can specify the order at will, and maybe a different
execution order is sometimes more relevant or efficient.
	If the user specifies a whole directory of test suites for the test, the
execution order of the suites depends on how the files are listed by the
operating system, which varies between systems.
	If a user wants to run only a subset of a test suite, there is no way one
test case could successfully depend on another.

	Depending on Unix:
Running Unix commands through os:cmd are likely not to work on non-Unix
platforms.

	Nested test cases:
Starting a test case from another not only tests the same thing twice, but
also makes it harder to follow what is being tested. Also, if the called test
case fails for some reason, so do the caller. This way, one error gives cause
to several error reports, which is to be avoided.
Functionality common for many test case functions can be implemented in common
help functions. If these functions are useful for test cases across suites,
put the help functions into common help modules.

	Failure to crash or exit when things go wrong:
Making requests without checking that the return value indicates success can
be OK if the test case fails later, but it is never acceptable just to print
an error message (into the log file) and return successfully. Such test cases
do harm, as they create a false sense of security when overviewing the test
results.

	Messing up for subsequent test cases:
Test cases are to restore as much of the execution environment as possible, so
that subsequent test cases do not crash because of their execution order. The
function end_per_testcase is suitable for
this.

Test Structure

 General

A test is performed by running one or more test suites. A test suite consists of
test cases, configuration functions, and information functions. Test cases can
be grouped in so called test case groups. A test suite is an Erlang module and
test cases are implemented as Erlang functions. Test suites are stored in test
directories.

 Skipping Test Cases

Certain test cases can be skipped, for example, if you know beforehand that a
specific test case fails. The reason can be functionality that is not yet
implemented, a bug that is known but not yet fixed, or some functionality that
does not work or is not applicable on a specific platform.
Test cases can be skipped in the following ways:
	Using skip_suites and skip_cases terms in
test specifications.
	Returning {skip,Reason} from function
init_per_testcase/2 or
init_per_suite/1.
	Returning {skip,Reason} from the execution clause of the test case. The
execution clause is called, so the author must ensure that the test case does
not run.

When a test case is skipped, it is noted as SKIPPED in the HTML log.

 Definition of Terms

	Auto-skipped test case - When a configuration function fails (that is,
terminates unexpectedly), the test cases depending on the configuration
function are skipped automatically by Common Test. The status of the test
cases is then "auto-skipped". Test cases are also "auto-skipped" by
Common Test if the required configuration data is unavailable at runtime.

	Configuration function - A function in a test suite that is meant to be
used for setting up, cleaning up, and/or verifying the state and environment
on the System Under Test (SUT) and/or the Common Test host node, so that a
test case (or a set of test cases) can execute correctly.

	Configuration file - A file containing data related to a test and/or an
SUT, for example, protocol server addresses, client login details, and
hardware interface addresses. That is, any data that is to be handled as
variable in the suite and not be hard-coded.

	Configuration variable - A name (an Erlang atom) associated with a data
value read from a configuration file.

	data_dir - Data directory for a test suite. This directory contains any
files used by the test suite, for example, extra Erlang modules, binaries, or
data files.

	Information function - A function in a test suite that returns a list of
properties (read by the Common Test server) that describes the conditions
for executing the test cases in the suite.

	Major log file - An overview and summary log file for one or more test
suites.

	Minor log file - A log file for one particular test case. Also called
the test case log file.

	priv_dir - Private directory for a test suite. This directory is to be
used when the test suite needs to write to files.

	ct_run - The name of an executable program that can be used as an
interface for specifying and running tests with Common Test.

	Test case - A single test included in a test suite. A test case is
implemented as a function in a test suite module.

	Test case group - A set of test cases sharing configuration functions
and execution properties. The execution properties specify if the test cases
in the group are to be executed in random order, in parallel, or in sequence,
and if the execution of the group is be repeated. Test case groups can also be
nested. That is, a group can, besides test cases, contain subgroups.

	Test suite - An Erlang module containing a collection of test cases for
a specific functional area.

	Test directory - A directory containing one or more test suite modules,
that is, a group of test suites.

	Argument Config - A list of key-value tuples (that is, a property
list) containing runtime configuration data passed from the configuration
functions to the test cases.

	User-skipped test case - The status of a test case explicitly skipped in
any of the ways described in section
Skipping Test Cases.

Examples and Templates

 Test Suite Example

The following example test suite shows some tests of a database server:
-module(db_data_type_SUITE).

-include_lib("common_test/include/ct.hrl").

%% Test server callbacks
-export([suite/0, all/0,
 init_per_suite/1, end_per_suite/1,
 init_per_testcase/2, end_per_testcase/2]).

%% Test cases
-export([string/1, integer/1]).

-define(CONNECT_STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

%%--
%% COMMON TEST CALLBACK FUNCTIONS
%%--

%%--
%% Function: suite() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%
%% Description: Returns list of tuples to set default properties
%% for the suite.
%%--
suite() ->
 [{timetrap,{minutes,1}}].

%%--
%% Function: init_per_suite(Config0) -> Config1
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Initialization before the suite.
%%--
init_per_suite(Config) ->
 {ok, Ref} = db:connect(?CONNECT_STR, []),
 TableName = db_lib:unique_table_name(),
 [{con_ref, Ref },{table_name, TableName}| Config].

%%--
%% Function: end_per_suite(Config) -> term()
%%
%% Config = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after the suite.
%%--
end_per_suite(Config) ->
 Ref = proplists:get_value(con_ref, Config),
 db:disconnect(Ref),
 ok.

%%--
%% Function: init_per_testcase(TestCase, Config0) -> Config1
%%
%% TestCase = atom()
%% Name of the test case that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Initialization before each test case.
%%--
init_per_testcase(Case, Config) ->
 Ref = proplists:get_value(con_ref, Config),
 TableName = proplists:get_value(table_name, Config),
 ok = db:create_table(Ref, TableName, table_type(Case)),
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config) -> term()
%%
%% TestCase = atom()
%% Name of the test case that is finished.
%% Config = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after each test case.
%%--
end_per_testcase(_Case, Config) ->
 Ref = proplists:get_value(con_ref, Config),
 TableName = proplists:get_value(table_name, Config),
 ok = db:delete_table(Ref, TableName),
 ok.

%%--
%% Function: all() -> GroupsAndTestCases
%%
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% Name of a test case group.
%% TestCase = atom()
%% Name of a test case.
%%
%% Description: Returns the list of groups and test cases that
%% are to be executed.
%%--
all() ->
 [string, integer].

%%--
%% TEST CASES
%%--

string(Config) ->
 insert_and_lookup(dummy_key, "Dummy string", Config).

integer(Config) ->
 insert_and_lookup(dummy_key, 42, Config).

insert_and_lookup(Key, Value, Config) ->
 Ref = proplists:get_value(con_ref, Config),
 TableName = proplists:get_value(table_name, Config),
 ok = db:insert(Ref, TableName, Key, Value),
 [Value] = db:lookup(Ref, TableName, Key),
 ok = db:delete(Ref, TableName, Key),
 [] = db:lookup(Ref, TableName, Key),
 ok.

 Test Suite Templates

The Erlang mode for the Emacs editor includes two Common Test test suite
templates, one with extensive information in the function headers, and one with
minimal information. A test suite template provides a quick start for
implementing a suite from scratch and gives a good overview of the available
callback functions. The two templates follows:
Large Common Test Suite
%%%---
%%% File : example_SUITE.erl
%%% Author :
%%% Description :
%%%
%%% Created :
%%%---
-module(example_SUITE).

%% Note: This directive should only be used in test suites.
-compile(export_all).

-include_lib("common_test/include/ct.hrl").

%%--
%% COMMON TEST CALLBACK FUNCTIONS
%%--

%%--
%% Function: suite() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%
%% Description: Returns list of tuples to set default properties
%% for the suite.
%%
%% Note: The suite/0 function is only meant to be used to return
%% default data values, not perform any other operations.
%%--
suite() ->
 [{timetrap,{minutes,10}}].

%%--
%% Function: init_per_suite(Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the suite.
%%
%% Description: Initialization before the suite.
%%
%% Note: This function is free to add any key/value pairs to the Config
%% variable, but should NOT alter/remove any existing entries.
%%--
init_per_suite(Config) ->
 Config.

%%--
%% Function: end_per_suite(Config0) -> term() | {save_config,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after the suite.
%%--
end_per_suite(_Config) ->
 ok.

%%--
%% Function: init_per_group(GroupName, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% GroupName = atom()
%% Name of the test case group that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding configuration data for the group.
%% Reason = term()
%% The reason for skipping all test cases and subgroups in the group.
%%
%% Description: Initialization before each test case group.
%%--
init_per_group(_GroupName, Config) ->
 Config.

%%--
%% Function: end_per_group(GroupName, Config0) ->
%% term() | {save_config,Config1}
%%
%% GroupName = atom()
%% Name of the test case group that is finished.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding configuration data for the group.
%%
%% Description: Cleanup after each test case group.
%%--
end_per_group(_GroupName, _Config) ->
 ok.

%%--
%% Function: init_per_testcase(TestCase, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% TestCase = atom()
%% Name of the test case that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the test case.
%%
%% Description: Initialization before each test case.
%%
%% Note: This function is free to add any key/value pairs to the Config
%% variable, but should NOT alter/remove any existing entries.
%%--
init_per_testcase(_TestCase, Config) ->
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config0) ->
%% term() | {save_config,Config1} | {fail,Reason}
%%
%% TestCase = atom()
%% Name of the test case that is finished.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for failing the test case.
%%
%% Description: Cleanup after each test case.
%%--
end_per_testcase(_TestCase, _Config) ->
 ok.

%%--
%% Function: groups() -> [Group]
%%
%% Group = {GroupName,Properties,GroupsAndTestCases}
%% GroupName = atom()
%% The name of the group.
%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% Group properties that may be combined.
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()
%% The name of a test case.
%% Shuffle = shuffle | {shuffle,Seed}
%% To get cases executed in random order.
%% Seed = {integer(),integer(),integer()}
%% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
%% repeat_until_any_ok | repeat_until_any_fail
%% To get execution of cases repeated.
%% N = integer() | forever
%%
%% Description: Returns a list of test case group definitions.
%%--
groups() ->
 [].

%%--
%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%%
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% Name of a test case group.
%% TestCase = atom()
%% Name of a test case.
%% Reason = term()
%% The reason for skipping all groups and test cases.
%%
%% Description: Returns the list of groups and test cases that
%% are to be executed.
%%--
all() ->
 [my_test_case].

%%--
%% TEST CASES
%%--

%%--
%% Function: TestCase() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%
%% Description: Test case info function - returns list of tuples to set
%% properties for the test case.
%%
%% Note: This function is only meant to be used to return a list of
%% values, not perform any other operations.
%%--
my_test_case() ->
 [].

%%--
%% Function: TestCase(Config0) ->
%% ok | exit() | {skip,Reason} | {comment,Comment} |
%% {save_config,Config1} | {skip_and_save,Reason,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the test case.
%% Comment = term()
%% A comment about the test case that will be printed in the html log.
%%
%% Description: Test case function. (The name of it must be specified in
%% the all/0 list or in a test case group for the test case
%% to be executed).
%%--
my_test_case(_Config) ->
 ok.
Small Common Test Suite
%%%---
%%% File : example_SUITE.erl
%%% Author :
%%% Description :
%%%
%%% Created :
%%%---
-module(example_SUITE).

-compile(export_all).

-include_lib("common_test/include/ct.hrl").

%%--
%% Function: suite() -> Info
%% Info = [tuple()]
%%--
suite() ->
 [{timetrap,{seconds,30}}].

%%--
%% Function: init_per_suite(Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_suite(Config) ->
 Config.

%%--
%% Function: end_per_suite(Config0) -> term() | {save_config,Config1}
%% Config0 = Config1 = [tuple()]
%%--
end_per_suite(_Config) ->
 ok.

%%--
%% Function: init_per_group(GroupName, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% GroupName = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_group(_GroupName, Config) ->
 Config.

%%--
%% Function: end_per_group(GroupName, Config0) ->
%% term() | {save_config,Config1}
%% GroupName = atom()
%% Config0 = Config1 = [tuple()]
%%--
end_per_group(_GroupName, _Config) ->
 ok.

%%--
%% Function: init_per_testcase(TestCase, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% TestCase = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_testcase(_TestCase, Config) ->
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config0) ->
%% term() | {save_config,Config1} | {fail,Reason}
%% TestCase = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
end_per_testcase(_TestCase, _Config) ->
 ok.

%%--
%% Function: groups() -> [Group]
%% Group = {GroupName,Properties,GroupsAndTestCases}
%% GroupName = atom()
%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()
%% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}
%% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
%% repeat_until_any_ok | repeat_until_any_fail
%% N = integer() | forever
%%--
groups() ->
 [].

%%--
%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% TestCase = atom()
%% Reason = term()
%%--
all() ->
 [my_test_case].

%%--
%% Function: TestCase() -> Info
%% Info = [tuple()]
%%--
my_test_case() ->
 [].

%%--
%% Function: TestCase(Config0) ->
%% ok | exit() | {skip,Reason} | {comment,Comment} |
%% {save_config,Config1} | {skip_and_save,Reason,Config1}
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%% Comment = term()
%%--
my_test_case(_Config) ->
 ok.

Running Tests and Analyzing Results

 Using the Common Test Framework

The Common Test framework provides a high-level operator interface for
testing, providing the following features:
	Automatic compilation of test suites (and help modules)
	Creation of extra HTML pages for improved overview.
	Single-command interface for running all available tests
	Handling of configuration files specifying data related to the System Under
Test (SUT) (and any other variable data)
	Mode for running multiple independent test sessions in parallel with central
control and configuration

 Automatic Compilation of Test Suites and Help Modules

When Common Test starts, it automatically attempts to compile any suites
included in the specified tests. If particular suites are specified, only those
suites are compiled. If a particular test object directory is specified (meaning
all suites in this directory are to be part of the test), Common Test runs
function make:all/1 in the directory to compile the suites.
If compilation fails for one or more suites, the compilation errors are printed
to tty and the operator is asked if the test run is to proceed without the
missing suites, or be aborted. If the operator chooses to proceed, the tests
having missing suites are noted in the HTML log. If Common Test is unable to
prompt the user after compilation failure (if Common Test does not control
stdin), the test run proceeds automatically without the missing suites. This
behavior can however be modified with the ct_run flag
-abort_if_missing_suites, or the ct:run_test/1 option
{abort_if_missing_suites,TrueOrFalse}. If abort_if_missing_suites is set to
true, the test run stops immediately if some suites fail to compile.
Any help module (that is, regular Erlang module with name not ending with
"_SUITE") that resides in the same test object directory as a suite, which is
part of the test, is also automatically compiled. A help module is not mistaken
for a test suite (unless it has a "_SUITE" name). All help modules in a
particular test object directory are compiled, no matter if all or only
particular suites in the directory are part of the test.
If test suites or help modules include header files stored in other locations
than the test directory, these include directories can be specified by using
flag -include with ct_run, or option include with
ct:run_test/1. Also, an include path can be specified with an OS environment
variable, CT_INCLUDE_PATH.
Example (bash):
$ export CT_INCLUDE_PATH=~testuser/common_suite_files/include:~testuser/common_lib_files/include
Common Test passes all include directories (specified either with flag/option
include, or variable CT_INCLUDE_PATH , or both, to the compiler.
Include directories can also be specified in test specifications, see
Test Specifications.
If the user wants to run all test suites for a test object (or an OTP
application) by specifying only the top directory (for example, with start
flag/option dir), Common Test primarily looks for test suite modules in a
subdirectory named test. If this subdirectory does not exist, the specified
top directory is assumed to be the test directory, and test suites are read from
there instead.
To disable the automatic compilation feature, use flag -no_auto_compile with
ct_run, or option {auto_compile,false} with ct:run_test/1. With automatic
compilation disabled, the user is responsible for compiling the test suite
modules (and any help modules) before the test run. If the modules cannot be
loaded from the local file system during startup of Common Test, the user must
preload the modules before starting the test. Common Test only verifies that
the specified test suites exist (that is, that they are, or can be, loaded).
This is useful, for example, if the test suites are transferred and loaded as
binaries through RPC from a remote node.

 Running Tests from the OS Command Line

The ct_run program can be used for running tests from the OS
command line, for example, as follows:
	ct_run -config <configfilenames> -dir <dirs>
	ct_run -config <configfilenames> -suite <suiteswithfullpath>
	ct_run -userconfig <callbackmodulename> <configfilenames> -suite <suiteswithfullpath>
	ct_run -config <configfilenames> -suite <suitewithfullpath> -group <groups> -case <casenames>

Examples:
$ ct_run -config $CFGS/sys1.cfg $CFGS/sys2.cfg -dir $SYS1_TEST $SYS2_TEST
$ ct_run -userconfig ct_config_xml $CFGS/sys1.xml $CFGS/sys2.xml -dir $SYS1_TEST $SYS2_TEST
$ ct_run -suite $SYS1_TEST/setup_SUITE $SYS2_TEST/config_SUITE
$ ct_run -suite $SYS1_TEST/setup_SUITE -case start stop
$ ct_run -suite $SYS1_TEST/setup_SUITE -group installation -case start stop
The flags dir, suite, and group/case can be combined. For example, to run
x_SUITE and y_SUITE in directory testdir, as follows:
$ ct_run -dir ./testdir -suite x_SUITE y_SUITE
This has the same effect as the following:
$ ct_run -suite ./testdir/x_SUITE ./testdir/y_SUITE
For details, see
Test Case Group Execution.
The following flags can also be used with ct_run:
	-help - Lists all available start flags.

	-logdir <dir> - Specifies where the HTML log files are to be written.

	-label <name_of_test_run> - Associates the test run with a name that
gets printed in the overview HTML log files.

	-refresh_logs - Refreshes the top-level HTML index files.

	-shell - Starts interactive shell mode (described later).

	-step [step_opts] - Steps through test cases using the Erlang Debugger
(described later).

	-spec <testspecs> - Uses test specification as input (described later).

	-allow_user_terms - Allows user-specific terms in a test specification
(described later).

	-silent_connections [conn_types] - , tells Common Test to suppress
printouts for specified connections (described later).

	-stylesheet <css_file> - Points out a user HTML style sheet (described
later).

	-cover <cover_cfg_file> - To perform code coverage test (see
Code Coverage Analysis).

	-cover_stop <bool> - To specify if the cover tool is to be stopped
after the test is completed (see
Code Coverage Analysis).

	-event_handler <event_handlers> - To install
event handlers.

	-event_handler_init <event_handlers> - To install
event handlers including start
arguments.

	-ct_hooks <ct_hooks> - To install
Common Test Hooks including start arguments.

	-ct_hooks_order [test|config] - To modify
Common Test Hooks execution order.

	-enable_builtin_hooks <bool> - To enable or disable
Built-in Common Test Hooks. Default is
true.

	-include - Specifies include directories (described earlier).

	-no_auto_compile - Disables the automatic test suite compilation feature
(described earlier).

	-abort_if_missing_suites - Aborts the test run if one or more suites
fail to compile (described earlier).

	-multiply_timetraps <n> - Extends
timetrap time-out values.

	-scale_timetraps <bool> - Enables automatic
timetrap time-out scaling.

	-repeat <n> - Tells Common Test to repeat the tests n times
(described later).

	-duration <time> - Tells Common Test to repeat the tests for duration
of time (described later).

	-until <stop_time> - Tells Common Test to repeat the tests until
stop_time (described later).

	-force_stop [skip_rest] - On time-out, the test run is aborted when the
current test job is finished. If skip_rest is provided, the remaining test
cases in the current test job are skipped (described later).

	-decrypt_key <key> - Provides a decryption key for
encrypted configuration files.

	-decrypt_file <key_file> - Points out a file containing a decryption key
for
encrypted configuration files.

	-basic_html - Switches off HTML enhancements that can be incompatible
with older browsers.

	-logopts <opts> - Enables modification of the logging behavior, see
Log options.

	-verbosity <levels> - Sets
verbosity levels for printouts.

	-no_esc_chars - Disables automatic escaping of special HTML characters.
See the Logging chapter.

Note
Directories passed to Common Test can have either relative or absolute
paths.

Note
Any start flags to the Erlang runtime system (application ERTS) can also be
passed as parameters to ct_run. It is, for example, useful to be able to
pass directories to be added to the Erlang code server search path with flag
-pa or -pz. If you have common help- or library modules for test suites
(separately compiled), stored in other directories than the test suite
directories, these help/lib directories are preferably added to the code
path this way.
Example:
$ ct_run -dir ./chat_server -logdir ./chat_server/testlogs -pa $PWD/chat_server/ebin
The absolute path of directory chat_server/ebin is here passed to the code
server. This is essential because relative paths are stored by the code server
as relative, and Common Test changes the current working directory of ERTS
during the test run.

The ct_run program sets the exit status before shutting down. The following
values are defined:
	0 indicates a successful testrun, that is, without failed or auto-skipped
test cases.
	1 indicates that one or more test cases have failed, or have been
auto-skipped.
	2 indicates that the test execution has failed because of, for example,
compilation errors, or an illegal return value from an information function.

If auto-skipped test cases do not affect the exit status. The default behavior
can be changed using start flag:
-exit_status ignore_config
Note
Executing ct_run without start flags is equal to the command:
ct_run -dir ./

For more information about the ct_run program, see module
ct_run and section
Installation.

 Running Tests from the Erlang Shell or from an Erlang Program

Common Test provides an Erlang API for running tests. The main (and most
flexible) function for specifying and executing tests is ct:run_test/1. It
takes the same start parameters as ct_run, but
the flags are instead specified as options in a list of key-value tuples. For
example, a test specified with ct_run as follows:
$ ct_run -suite ./my_SUITE -logdir ./results
is with ct:run_test/1 specified as:
1> ct:run_test([{suite,"./my_SUITE"},{logdir,"./results"}]).
The function returns the test result, represented by the tuple
{Ok,Failed,{UserSkipped,AutoSkipped}}, where each element is an integer. If
test execution fails, the function returns the tuple {error,Reason}, where the
term Reason explains the failure.
The default start option {dir,Cwd} (to run all suites in the current working
directory) is used if the function is called with an empty list of options.

 Releasing the Erlang Shell

During execution of tests started with ct:run_test/1, the Erlang shell
process, controlling stdin, remains the top-level process of the Common Test
system of processes. Consequently, the Erlang shell is not available for
interaction during the test run. If this is not desirable, for example, because
the shell is needed for debugging purposes or for interaction with the SUT
during test execution, set start option release_shell to true (in the call
to ct:run_test/1 or by using the corresponding test specification term,
described later). This makes Common Test release the shell immediately after
the test suite compilation stage. To accomplish this, a test runner process is
spawned to take control of the test execution. The effect is that
ct:run_test/1 returns the pid of this process rather than the test result,
which instead is printed to tty at the end of the test run.
Note
To use the functions ct:break/1,2 and
ct:continue/0,1, release_shell must be set to true.

For details, see ct:run_test/1 manual page.

 Test Case Group Execution

With the ct_run flag, or ct:run_test/1 option group, one or more test case
groups can be specified, optionally in combination with specific test cases. The
syntax for specifying groups on the command line is as follows:
$ ct_run -group <group_names_or_paths> [-case <cases>]
The syntax in the Erlang shell is as follows:
1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).
Parameter group_names_or_paths specifies one or more group names and/or one or
more group paths. At startup, Common Test searches for matching groups in the
group definitions tree (that is, the list returned from Suite:groups/0; for
details, see section Test Case Groups.
Given a group name, say g, Common Test searches for all paths leading to
g. By path is meant a sequence of nested groups, which must be followed to get
from the top-level group to g. To execute the test cases in group g,
Common Test must call the init_per_group/2 function for each group in the
path to g, and all corresponding end_per_group/2 functions afterwards. This
is because the configuration of a test case in g (and its Config input data)
depends on init_per_testcase(TestCase, Config) and its return value, which in
turn depends on init_per_group(g, Config) and its return value, which in turn
depends on init_per_group/2 of the group above g, and so on, all the way up
to the top-level group.
This means that if there is more than one way to locate a group (and its test
cases) in a path, the result of the group search operation is a number of tests,
all of which are to be performed. Common Test interprets a group specification
that consists of a single name as follows:
"Search and find all paths in the group definitions tree that lead to the
specified group and, for each path, create a test that does the following, in
order:
	Executes all configuration functions in the path to the specified group.
	Executes all, or all matching, test cases in this group.
	Executes all, or all matching, test cases in all subgroups of the group."

The user can specify a specific group path with parameter
group_names_or_paths. With this type of specification execution of unwanted
groups (in otherwise matching paths), and/or the execution of subgroups can be
avoided. The command line syntax of the group path is a list of group names in
the path, for example:
$ ct_run -suite "./x_SUITE" -group [g1,g3,g4] -case tc1 tc5
The syntax in the Erlang shell is as follows (requires a list within the groups
list):
1> ct:run_test([{suite,"./x_SUITE"}, {group,[[g1,g3,g4]]}, {testcase,[tc1,tc5]}]).
The last group in the specified path is the terminating group in the test, that
is, no subgroups following this group are executed. In the previous example,
g4 is the terminating group. Hence, Common Test executes a test that calls
all init configuration functions in the path to g4, that is, g1..g3..g4.
It then calls test cases tc1 and tc5 in g4, and finally all end
configuration functions in order g4..g3..g1.
Note
The group path specification does not necessarily have to include all groups
in the path to the terminating group. Common Test searches for all matching
paths if an incomplete group path is specified.

Note
Group names and group paths can be combined with parameter
group_names_or_paths. Each element is treated as an individual specification
in combination with parameter cases. The following examples illustrates
this.

Examples:
-module(x_SUITE).
...
%% The group definitions:
groups() ->
 [{top1,[],[tc11,tc12,
 {sub11,[],[tc12,tc13]},
 {sub12,[],[tc14,tc15,
 		 {sub121,[],[tc12,tc16]}]}]},

 {top2,[],[{group,sub21},{group,sub22}]},
 {sub21,[],[tc21,{group,sub2X2}]},
 {sub22,[],[{group,sub221},tc21,tc22,{group,sub2X2}]},
 {sub221,[],[tc21,tc23]},
 {sub2X2,[],[tc21,tc24]}].
The following executes two tests, one for all cases and all subgroups under
top1, and one for all under top2:
$ ct_run -suite "x_SUITE" -group all
1> ct:run_test([{suite,"x_SUITE"}, {group,all}]).
Using -group top1 top2, or {group,[top1,top2]} gives the same result.
The following executes one test for all cases and subgroups under top1:
$ ct_run -suite "x_SUITE" -group top1
1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}]).
The following runs a test executing tc12 in top1 and any subgroup under
top1 where it can be found (sub11 and sub121):
$ ct_run -suite "x_SUITE" -group top1 -case tc12
1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc12]}]).
The following executes tc12 only in group top1:
$ ct_run -suite "x_SUITE" -group [top1] -case tc12
1> ct:run_test([{suite,"x_SUITE"}, {group,[[top1]]}, {testcase,[tc12]}]).
The following searches top1 and all its subgroups for tc16 resulting in that
this test case executes in group sub121:
$ ct_run -suite "x_SUITE" -group top1 -case tc16
1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc16]}]).
Using the specific path -group [sub121] or {group,[[sub121]]} gives the same
result in this example.
The following executes two tests, one including all cases and subgroups under
sub12, and one with only the test cases in sub12:
$ ct_run -suite "x_SUITE" -group sub12 [sub12]
1> ct:run_test([{suite,"x_SUITE"}, {group,[sub12,[sub12]]}]).
In the following example, Common Test finds and executes two tests, one for
the path from top2 to sub2X2 through sub21, and one from top2 to
sub2X2 through sub22:
$ ct_run -suite "x_SUITE" -group sub2X2
1> ct:run_test([{suite,"x_SUITE"}, {group,[sub2X2]}]).
In the following example, by specifying the unique path
top2 -> sub21 -> sub2X2, only one test is executed. The second possible path,
from top2 to sub2X2 (from the former example) is discarded:
$ ct_run -suite "x_SUITE" -group [sub21,sub2X2]
1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub21,sub2X2]]}]).
The following executes only the test cases for sub22 and in reverse order
compared to the group definition:
$ ct_run -suite "x_SUITE" -group [sub22] -case tc22 tc21
1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub22]]}, {testcase,[tc22,tc21]}]).
If a test case belonging to a group (according to the group definition) is
executed without a group specification, that is, simply by (using the command
line):
$ ct_run -suite "my_SUITE" -case my_tc
or (using the Erlang shell):
1> ct:run_test([{suite,"my_SUITE"}, {testcase,my_tc}]).
then Common Test ignores the group definition and executes the test case in
the scope of the test suite only (no group configuration functions are called).
The group specification feature, as presented in this section, can also be used
in Test Specifications (with some
extra features added).

 Running the Interactive Shell Mode

You can start Common Test in an interactive shell mode where no automatic
testing is performed. Instead, Common Test starts its utility processes,
installs configuration data (if any), and waits for the user to call functions
(typically test case support functions) from the Erlang shell.
The shell mode is useful, for example, for debugging test suites, analyzing and
debugging the SUT during "simulated" test case execution, and trying out various
operations during test suite development.
To start the interactive shell mode, start an Erlang shell manually and call
ct:install/1 to install any configuration data you might need (use [] as
argument otherwise). Then call ct:start_interactive/0 to start Common Test.
If you use the ct_run program, you can start the Erlang shell and
Common Test in one go by using the flag -shell and, optionally, flag
-config and/or -userconfig.
Examples:
	ct_run -shell
	ct_run -shell -config cfg/db.cfg
	ct_run -shell -userconfig db_login testuser x523qZ

If no configuration file is specified with command ct_run, a warning is
displayed. If Common Test has been run from the same directory earlier, the
same configuration file(s) are used again. If Common Test has not been run
from this directory before, no configuration files are available.
If any functions using "required configuration data" (for example, functions
ct_telnet or ct_ftp) are to be called from the Erlang shell, first require
configuration data with ct:require/1,2. This is equivalent
to a require statement in the
Test Suite Information Function or in the
Test Case Information Function.
Example:
1> ct:require(unix_telnet, unix).
ok
2> ct_telnet:open(unix_telnet).
{ok,<0.105.0>}
4> ct_telnet:cmd(unix_telnet, "ls .").
{ok,["ls .","file1 ...",...]}
Everything that Common Test normally prints in the test case logs, are in the
interactive mode written to a log named ctlog.html in directory
ct_run.<timestamp>. A link to this file is available in the file named
last_interactive.html in the directory from which you execute ct_run.
Specifying a different root directory for the logs than the current working
directory is not supported.
If you wish to exit the interactive mode (for example, to start an automated
test run with ct:run_test/1), call function ct:stop_interactive/0. This
shuts down the running ct application. Associations between configuration
names and data created with require are consequently deleted. Function
ct:start_interactive/0 takes you back into interactive mode, but the previous
state is not restored.

 Step-by-Step Execution of Test Cases with the Erlang Debugger

Using ct_run -step [opts], or by passing option {step,Opts} to
ct:run_test/1, the following is possible:
	Get the Erlang Debugger started automatically.
	Use its graphical interface to investigate the state of the current test case.
	Execute the test case step-by-step and/or set execution breakpoints.

If no extra options are specified with flag/option step, breakpoints are set
automatically on the test cases that are to be executed by Common Test, and
those functions only. If step option config is specified, breakpoints are also
initially set on the configuration functions in the suite, that is,
init_per_suite/1, end_per_suite/1, init_per_group/2, end_per_group/2,
init_per_testcase/2 and end_per_testcase/2.
Common Test enables the Debugger auto-attach feature, which means that for
every new interpreted test case function that starts to execute, a new trace
window automatically pops up (as each test case executes on a dedicated Erlang
process). Whenever a new test case starts, Common Test attempts to close the
inactive trace window of the previous test case. However, if you prefer
Common Test to leave inactive trace windows, use option keep_inactive.
The step functionality can be used together with flag/option suite and suite
+ case/testcase, but not together with dir.

 Test Specifications

 General Description

The most flexible way to specify what to test, is to use a test specification,
which is a sequence of Erlang terms. The terms are normally declared in one or
more text files (see ct:run_test/1), but can also be passed to Common Test
on the form of a list (see ct:run_testspec/1). There are two general types of
terms: configuration terms and test specification terms.
With configuration terms it is, for example, possible to do the following:
	Label the test run (similar to ct_run -label).
	Evaluate any expressions before starting the test.
	Import configuration data (similar to ct_run -config/-userconfig).
	Specify the top-level HTML log directory (similar to ct_run -logdir).
	Enable code coverage analysis (similar to ct_run -cover).
	Install Common Test Hooks (similar to ct_run -ch_hooks).
	Install event_handler plugins (similar to ct_run -event_handler).
	Specify include directories to be passed to the compiler for automatic
compilation (similar to ct_run -include).
	Disable the auto-compilation feature (similar to ct_run -no_auto_compile).
	Set verbosity levels (similar to ct_run -verbosity).

Configuration terms can be combined with ct_run start flags or ct:run_test/1
options. The result is, for some flags/options and terms, that the values are
merged (for example, configuration files, include directories, verbosity levels,
and silent connections) and for others that the start flags/options override the
test specification terms (for example, log directory, label, style sheet, and
auto-compilation).
With test specification terms, it is possible to state exactly which tests to
run and in which order. A test term specifies either one or more suites, one or
more test case groups (possibly nested), or one or more test cases in a group
(or in multiple groups) or in a suite.
Any number of test terms can be declared in sequence. Common Test compiles by
default the terms into one or more tests to be performed in one resulting test
run. A term that specifies a set of test cases "swallows" one that only
specifies a subset of these cases. For example, the result of merging one term
specifying that all cases in suite S are to be executed, with another term
specifying only test case X and Y in S, is a test of all cases in S. However, if
a term specifying test case X and Y in S is merged with a term specifying case Z
in S, the result is a test of X, Y, and Z in S. To disable this behavior, that
is, to instead perform each test sequentially in a "script-like" manner, set
term merge_tests to false in the test specification.
A test term can also specify one or more test suites, groups, or test cases to
be skipped. Skipped suites, groups, and cases are not executed and show up in
the HTML log files as SKIPPED.

 Using Multiple Test Specification Files

When multiple test specification files are specified at startup (either with
ct_run -spec file1 file2 ... or ct:run_test([{spec, [File1,File2,...]}])),
Common Test either executes one test run per specification file, or joins the
files and performs all tests within one single test run. The first behavior is
the default one. The latter requires that start flag/option join_specs is
provided, for example,
run_test -spec ./my_tests1.ts ./my_tests2.ts -join_specs.
Joining a number of specifications, or running them separately, can also be
accomplished with (and can be combined with) test specification file inclusion.

 Test Specification File Inclusion

With the term specs, a test specification can include other specifications. An
included specification can either be joined with the source specification or
used to produce a separate test run (as with start flag/option join_specs
above).
Example:
%% In specification file "a.spec"
{specs, join, ["b.spec", "c.spec"]}.
{specs, separate, ["d.spec", "e.spec"]}.
%% Config and test terms follow
...
In this example, the test terms defined in files "b.spec" and "c.spec" are
joined with the terms in source specification "a.spec" (if any). The inclusion
of specifications "d.spec" and "e.spec" results in two separate, and
independent, test runs (one for each included specification).
Option join does not imply that the test terms are merged, only that all tests
are executed in one single test run.
Joined specifications share common configuration settings, such as the list of
config files or include directories. For configurations that cannot be
combined, such as settings for logdir or verbosity, it is up to the user to
ensure there are no clashes when the test specifications are joined.
Specifications included with option separate do not share configuration
settings with the source specification. This is useful, for example, if there
are clashing configuration settings in included specifications, making it them
impossible to join.
If {merge_tests,true} is set in the source specification (which is the default
setting), terms in joined specifications are merged with terms in the source
specification (according to the description of merge_tests earlier).
Notice that it is always the merge_tests setting in the source specification
that is used when joined with other specifications. Say, for example, that a
source specification A, with tests TA1 and TA2, has {merge_tests,false} set,
and that it includes another specification, B, with tests TB1 and TB2, that has
{merge_tests,true} set. The result is that the test series
TA1,TA2,merge(TB1,TB2) is executed. The opposite merge_tests settings would
result in the test series merge(merge(TA1,TA2),TB1,TB2).
The term specs can be used to nest specifications, that is, have one
specification include other specifications, which in turn include others, and so
no

 Test Case Groups

When a test case group is specified, the resulting test executes function
init_per_group, followed by all test cases and subgroups (including their
configuration functions), and finally function end_per_group. Also, if
particular test cases in a group are specified, init_per_group and
end_per_group, for the group in question, are called. If a group defined (in
Suite:groups/0) as a subgroup of another group, is specified (or if particular
test cases of a subgroup are), Common Test calls the configuration functions
for the top-level groups and for the subgroup in question (making it possible to
pass configuration data all the way from init_per_suite down to the test cases
in the subgroup).
The test specification uses the same mechanism for specifying test case groups
through names and paths, as explained in section
Test Case Group Execution, with the
addition of element GroupSpec.
Element GroupSpec makes it possible to specify group execution properties that
overrides those in the group definition (that is, in groups/0). Execution
properties for subgroups might be overridden as well. This feature makes it
possible to change properties of groups at the time of execution, without having
to edit the test suite. The same feature is available for group elements in
the Suite:all/0 list. For details and examples, see section
Test Case Groups.

 Test Specification Syntax

Test specifications can be used to run tests both in a single test host
environment and in a distributed Common Test environment (Large Scale
Testing). The node parameters in term init are only relevant in the latter
(see section Test Specifications in
Large Scale Testing). For details about the various terms, see the corresponding
sections in the User's Guide, for example, the following:
	The ct_run program for an overview of
available start flags (as most flags have a corresponding configuration term)
	Logging (for terms verbosity, stylesheet,
basic_html and esc_chars)
	External Configuration Data (for terms config
and userconfig)
	Event Handling (for the
event_handler term)
	Common Test Hooks (for term ct_hooks)

Configuration terms:
{merge_tests, Bool}.

{define, Constant, Value}.

{specs, InclSpecsOption, TestSpecs}.

{node, NodeAlias, Node}.

{init, InitOptions}.
{init, [NodeAlias], InitOptions}.

{label, Label}.
{label, NodeRefs, Label}.

{verbosity, VerbosityLevels}.
{verbosity, NodeRefs, VerbosityLevels}.

{stylesheet, CSSFile}.
{stylesheet, NodeRefs, CSSFile}.

{silent_connections, ConnTypes}.
{silent_connections, NodeRefs, ConnTypes}.

{multiply_timetraps, N}.
{multiply_timetraps, NodeRefs, N}.

{scale_timetraps, Bool}.
{scale_timetraps, NodeRefs, Bool}.

{cover, CoverSpecFile}.
{cover, NodeRefs, CoverSpecFile}.

{cover_stop, Bool}.
{cover_stop, NodeRefs, Bool}.

{include, IncludeDirs}.
{include, NodeRefs, IncludeDirs}.

{auto_compile, Bool},
{auto_compile, NodeRefs, Bool},

{abort_if_missing_suites, Bool},
{abort_if_missing_suites, NodeRefs, Bool},

{config, ConfigFiles}.
{config, ConfigDir, ConfigBaseNames}.
{config, NodeRefs, ConfigFiles}.
{config, NodeRefs, ConfigDir, ConfigBaseNames}.

{userconfig, {CallbackModule, ConfigStrings}}.
{userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

{logdir, LogDir}.
{logdir, NodeRefs, LogDir}.

{logopts, LogOpts}.
{logopts, NodeRefs, LogOpts}.

{create_priv_dir, PrivDirOption}.
{create_priv_dir, NodeRefs, PrivDirOption}.

{event_handler, EventHandlers}.
{event_handler, NodeRefs, EventHandlers}.
{event_handler, EventHandlers, InitArgs}.
{event_handler, NodeRefs, EventHandlers, InitArgs}.

{ct_hooks, CTHModules}.
{ct_hooks, NodeRefs, CTHModules}.

{ct_hooks_order, CTHOrder}.

{enable_builtin_hooks, Bool}.

{basic_html, Bool}.
{basic_html, NodeRefs, Bool}.

{esc_chars, Bool}.
{esc_chars, NodeRefs, Bool}.

{release_shell, Bool}.
Test terms:
{suites, Dir, Suites}.
{suites, NodeRefs, Dir, Suites}.

{groups, Dir, Suite, Groups}.
{groups, NodeRefs, Dir, Suite, Groups}.

{groups, Dir, Suite, Groups, {cases,Cases}}.
{groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

{cases, Dir, Suite, Cases}.
{cases, NodeRefs, Dir, Suite, Cases}.

{skip_suites, Dir, Suites, Comment}.
{skip_suites, NodeRefs, Dir, Suites, Comment}.

{skip_groups, Dir, Suite, GroupNames, Comment}.
{skip_groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

{skip_cases, Dir, Suite, Cases, Comment}.
{skip_cases, NodeRefs, Dir, Suite, Cases, Comment}.
 Types:
Bool = true | false
Constant = atom()
Value = term()
InclSpecsOption = join | separate
TestSpecs = string() | [string()]
NodeAlias = atom()
Node = node()
NodeRef = NodeAlias | Node | master
NodeRefs = all_nodes | [NodeRef] | NodeRef
InitOptions = term()
Label = atom() | string()
VerbosityLevels = integer() | [{Category,integer()}]
Category = atom()
CSSFile = string()
ConnTypes = all | [atom()]
N = integer()
CoverSpecFile = string()
IncludeDirs = string() | [string()]
ConfigFiles = string() | [string()]
ConfigDir = string()
ConfigBaseNames = string() | [string()]
CallbackModule = atom()
ConfigStrings = string() | [string()]
LogDir = string()
LogOpts = [term()]
PrivDirOption = auto_per_run | auto_per_tc | manual_per_tc
EventHandlers = atom() | [atom()]
InitArgs = [term()]
CTHModules = [CTHModule |
 	 {CTHModule, CTHInitArgs} |
 	 {CTHModule, CTHInitArgs, CTHPriority}]
CTHModule = atom()
CTHInitArgs = term()
CTHOrder = test | config
Dir = string()
Suites = atom() | [atom()] | all
Suite = atom()
Groups = GroupPath | GroupSpec | [GroupSpec] | all
GroupPath = [[GroupSpec]]
GroupSpec = GroupName | {GroupName,Properties} | {GroupName,Properties,[GroupSpec]}
GroupName = atom()
GroupNames = GroupName | [GroupName]
Cases = atom() | [atom()] | all
Comment = string() | ""
The difference between the config terms above is that with ConfigDir,
ConfigBaseNames is a list of base names, that is, without directory paths.
ConfigFiles must be full names, including paths. For example, the following
two terms have the same meaning:
{config, ["/home/testuser/tests/config/nodeA.cfg",
 "/home/testuser/tests/config/nodeB.cfg"]}.

{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
Note
Any relative paths, specified in the test specification, are relative to the
directory containing the test specification file if
ct_run -spec TestSpecFile ... or ct:run:test([{spec,TestSpecFile},...])
executes the test.
The path is relative to the top-level log directory if
ct:run:testspec(TestSpec) executes the test.

 Constants

The term define introduces a constant that is used to replace the name
Constant with Value, wherever it is found in the test specification. This
replacement occurs during an initial iteration through the test specification.
Constants can be used anywhere in the test specification, for example, in any
lists and tuples, and even in strings and inside the value part of other
constant definitions. A constant can also be part of a node name, but that is
the only place where a constant can be part of an atom.
Note
For the sake of readability, the name of the constant must always begin with
an uppercase letter, or a $, ?, or _. This means that it must always be
single quoted (as the constant name is an atom, not text).

The main benefit of constants is that they can be used to reduce the size (and
avoid repetition) of long strings, such as file paths.
Examples:
%% 1a. no constant
{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "/home/testuser/tests/suites", all}.

%% 1b. with constant
{define, 'TESTDIR', "/home/testuser/tests"}.
{config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "'TESTDIR'/suites", all}.

%% 2a. no constants
{config, [testnode@host1, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, [testnode@host1, testnode@host2], "../suites", [x_SUITE, y_SUITE]}.

%% 2b. with constants
{define, 'NODE', testnode}.
{define, 'NODES', ['NODE'@host1, 'NODE'@host2]}.
{config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, 'NODES', "../suites", [x_SUITE, y_SUITE]}.
Constants make the test specification term alias, in previous versions of
Common Test, redundant. This term is deprecated but remains supported in
upcoming Common Test releases. Replacing alias terms with define is
strongly recommended though. An example of such replacement follows:
%% using the old alias term
{config, "/home/testuser/tests/config/nodeA.cfg"}.
{alias, suite_dir, "/home/testuser/tests/suites"}.
{groups, suite_dir, x_SUITE, group1}.

%% replacing with constants
{define, 'TestDir', "/home/testuser/tests"}.
{define, 'CfgDir', "'TestDir'/config"}.
{define, 'SuiteDir', "'TestDir'/suites"}.
{config, 'CfgDir', "nodeA.cfg"}.
{groups, 'SuiteDir', x_SUITE, group1}.
Constants can well replace term node also, but this still has a declarative
value, mainly when used in combination with NodeRefs == all_nodes (see
Types).

 Example

Here follows a simple test specification example:
{define, 'Top', "/home/test"}.
{define, 'T1', "'Top'/t1"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.
{define, 'CfgFile', "config.cfg"}.

{logdir, "'Top'/logs"}.

{config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

{suites, 'T1', all}.
{skip_suites, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
{skip_cases, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
{skip_cases, 'T1', t1C_SUITE, [test1], "Ignore"}.

{suites, 'T2', [t2B_SUITE,t2C_SUITE]}.
{cases, 'T2', t2A_SUITE, [test4,test1,test7]}.

{skip_suites, 'T3', all, "Not implemented"}.
The example specifies the following:
	The specified logdir directory is used for storing the HTML log files (in
subdirectories tagged with node name, date, and time).
	The variables in the specified test system configuration files are imported
for the test.
	The first test to run includes all suites for system t1. Suites t1B and
t1D are excluded from the test. Test cases test3 and test4 in t1A and
test1 case in t1C are also excluded from the test.
	The second test to run is for system t2. The included suites are t2B and
t2C. Test cases test4, test1, and test7 in suite t2A are also
included. The test cases are executed in the specified order.
	The last test to run is for system t3. Here, all suites are skipped and this
is explicitly noted in the log files.

 The init Term

With term init it is possible to specify initialization options for nodes
defined in the test specification. There are options to start the node and to
evaluate any function on the node. For details, see section
Automatic Startup of Test Target Nodes in
section Using Common Test for Large Scale Testing.

 User-Specific Terms

The user can provide a test specification including (for Common Test)
unrecognizable terms. If this is desired, use flag -allow_user_terms when
starting tests with ct_run. This forces Common Test to ignore unrecognizable
terms. In this mode, Common Test is not able to check the specification for
errors as efficiently as if the scanner runs in default mode. If ct:run_test/1
is used for starting the tests, the relaxed scanner mode is enabled by tuple
{allow_user_terms,true}.

 Reading Test Specification Terms

Terms in the current test specification (that is, the specification that has
been used to configure and run the current test) can be looked up. The function
get_testspec_terms() returns a list of all test
specification terms (both configuration terms and test terms), and
get_testspec_terms(Tags) returns the term (or a list of terms) matching the
tag (or tags) in Tags.
For example, in the test specification:
...
{label, my_server_smoke_test}.
{config, "../../my_server_setup.cfg"}.
{config, "../../my_server_interface.cfg"}.
...
And in, for example, a test suite or a Common Test Hook function:
...
[{label,[{_Node,TestType}]}, {config,CfgFiles}] =
 ct:get_testspec_terms([label,config]),

[verify_my_server_cfg(TestType, CfgFile) || {Node,CfgFile} <- CfgFiles,
 Node == node()];
...

 Log Files

As the execution of the test suites proceed, events are logged in the following
four different ways:
	Text to the operator console.
	Suite-related information is sent to the major log file.
	Case-related information is sent to the minor log file.
	The HTML overview log file is updated with test results.
	A link to all runs executed from a certain directory is written in the log
named all_runs.html and direct links to all tests (the latest results) are
written to the top-level index.html.

Typically the operator, possibly running hundreds or thousands of test cases,
does not want to fill the console with details about, or printouts from,
specific test cases. By default, the operator only sees the following:
	A confirmation that the test has started and information about how many test
cases are executed in total.
	A small note about each failed test case.
	A summary of all the run test cases.
	A confirmation when the test run is complete.
	Some special information, such as error reports, progress reports, and
printouts written with erlang:display/1, or io:format/3 specifically
addressed to a receiver other than standard_io (for
example, the default group leader process user).

To dig deeper into the general results, or the result of a specific test case,
the operator can do so by following the links in the HTML presentation and read
the major or minor log files. The "all_runs.html" page is a good starting point.
It is located in logdir and contains a link to each test run, including a
quick overview (with date and time, node name, number of tests, test names, and
test result totals).
An "index.html" page is written for each test run (that is, stored in the
ct_run directory tagged with node name, date, and time). This file provides an
overview of all individual tests performed in the same test run. The test names
follow the following convention:
	TopLevelDir.TestDir (all suites in TestDir executed)
	TopLevelDir.TestDir:suites (specific suites executed)
	TopLevelDir.TestDir.Suite (all cases in Suite executed)
	TopLevelDir.TestDir.Suite:cases (specific test cases executed)
	TopLevelDir.TestDir.Suite.Case (only Case executed)

The "test run index" page includes a link to the Common Test Framework Log
file in which information about imported configuration data and general test
progress is written. This log file is useful to get snapshot information about
the test run during execution. It can also be helpful when analyzing test
results or debugging test suites.
The "test run index" page indicates if a test has missing suites (that is,
suites that Common Test failed to compile). Names of the missing suites can be
found in the Common Test Framework Log file.
The major log file shows a detailed report of the test run. It includes test
suite and test case names, execution time, the exact reason for failures, and so
on. The information is available in both a file with textual and with HTML
representation. The HTML file shows a summary that gives a good overview of the
test run. It also has links to each individual test case log file for quick
viewing with an HTML browser.
The minor log files contain full details of every single test case, each in a
separate file. This way, it is straightforward to compare the latest results to
that of previous test runs, even if the set of test cases changes. If
application SASL is running, its logs are also printed to the current minor log
file by the cth_log_redirect built-in hook.
The full name of the minor log file (that is, the name of the file including the
absolute directory path) can be read during execution of the test case. It comes
as value in tuple {tc_logfile,LogFileName} in the Config list (which means
it can also be read by a pre- or post Common Test Hook function). Also, at the
start of a test case, this data is sent with an event to any installed event
handler. For details, see section
Event Handling.
The log files are written continuously during a test run and links are always
created initially when a test starts. Thevtest progress can therefore be
followed simply by refreshing pages in the HTML browser. Statistics totals are
not presented until a test is complete however.

 Log Options

With start flag logopts options that modify some aspects of the logging
behavior can be specified. The following options are available:
	no_src - The HTML version of the test suite source code is not generated
during the test run (and is consequently not available in the log file
system).

	no_nl - Common Test does not add a newline character (\n) to the end
of an output string that it receives from a call to, for example,
io:format/2, and which it prints to the test case log.

For example, if a test is started with:
$ ct_run -suite my_SUITE -logopts no_nl
then printouts during the test made by successive calls to io:format("x"),
appears in the test case log as:
xxx
instead of each x printed on a new line, which is the default behavior.

 Sorting HTML Table Columns

By clicking the name in the column header of any table (for example, "Ok",
"Case", "Time", and so on), the table rows are sorted in whatever order makes
sense for the type of value (for example, numerical for "Ok" or "Time", and
alphabetical for "Case"). The sorting is performed through JavaScript code,
automatically inserted into the HTML log files. Common Test uses the
jQuery library and the
tablesorter plugin, with
customized sorting functions, for this implementation.

 The Unexpected I/O Log

The test suites overview page includes a link to the Unexpected I/O Log. In this
log, Common Test saves printouts made with ct:log/1,2,3,4,5
and ct:pal/1,2,3,4,5, as well as captured system error- and
progress reports, which cannot be associated with particular test cases and
therefore cannot be written to individual test case log files. This occurs, for
example, if a log printout is made from an external process (not a test case
process), or if an error- or progress report comes in, during a short interval
while Common Test is not executing a test case or configuration function, or
while Common Test is currently executing a parallel test case group.

 The Pre- and Post Test I/O Log

The Common Test Framework Log page includes links to the Pre- and Post Test
I/O Log. In this log, Common Test saves printouts made with ct:log/1,2,3,4,5
and ct:pal/1,2,3,4,5, as well as captured system error- and progress reports,
which take place before, and after, the test run. Examples of this are printouts
from a CT hook init- or terminate function, or progress reports generated when
an OTP application is started from a CT hook init function. Another example is
an error report generated because of a failure when an external application is
stopped from a CT hook terminate function. All information in these examples
ends up in the Pre- and Post Test I/O Log. For more information on how to
synchronize test runs with external user applications, see section
Synchronizing in section Common Test Hooks.
Note
Logging to file with ct:log/1,2,3,4,5 or ct:pal/1,2,3,4,5 only works when
Common Test is running. Printouts with ct:pal/1,2,3,4,5 are however always
displayed on screen.

 Delete Old Logs

Common Test can automatically delete old log. This is specified with the
keep_logs option. The default value for this option is all, which means that
no logs are deleted. If the value is set to an integer, N, Common Test
deletes all ct_run.<timestamp> directories, except the N newest.

 HTML Style Sheets

Common Test uses an HTML Style Sheet (CSS file) to control the look of the
HTML log files generated during test runs. If the log files are not displayed
correctly in the browser of your choice, or you prefer a more primitive ("pre
Common Test v1.6") look of the logs, use the start flag/option:
basic_html
This disables the use of style sheets and JavaScripts (see
Sorting HTML Table Columns).
Common Test includes an optional feature to allow user HTML style sheets for
customizing printouts. The functions in ct that print to a test case HTML log
file (log/3,4,5 and pal/3,4,5) accept Category as first argument. With
this argument a category can be specified that can be mapped to a named div
selector in a CSS rule-set. This is useful, especially for coloring text
differently depending on the type of (or reason for) the printout. Say you want
one particular background color for test system configuration information, a
different one for test system state information, and finally one for errors
detected by the test case functions. The corresponding style sheet can look as
follows:
div.sys_config { background:blue }
div.sys_state { background:yellow }
div.error { background:red }
Common Test prints the text from ct:log/3,4,5 or ct:pal/3,4,5 inside a pre
element nested under the named div element. Since the pre selector has a
predefined CSS rule (in file ct_default.css) for the attributes color,
font-family and font-size, if a user wants to change any of the predefined
attribute settings, a new rule for pre must be added to the user stylesheet.
Example:
div.error pre { color:white }
Here, white text is used instead of the default black for div.error printouts
(and no other attribute settings for pre are affected).
To install the CSS file (Common Test inlines the definition in the HTML code),
the file name can be provided when executing ct_run.
Example:
$ ct_run -dir $TEST/prog -stylesheet $TEST/styles/test_categories.css
Categories in a CSS file installed with flag -stylesheet are on a global test
level in the sense that they can be used in any suite that is part of the test
run.
Style sheets can also be installed on a per suite and per test case basis.
Example:
-module(my_SUITE).
...
suite() -> [..., {stylesheet,"suite_categories.css"}, ...].
...
my_testcase(_) ->
 ...
 ct:log(sys_config, "Test node version: ~p", [VersionInfo]),
 ...
 ct:log(sys_state, "Connections: ~p", [ConnectionInfo]),
 ...
 ct:pal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfo]),
 ct:fail(SomeFault).
If the style sheet is installed as in this example, the categories are private
to the suite in question. They can be used by all test cases in the suite, but
cannot be used by other suites. A suite private style sheet, if specified, is
used in favor of a global style sheet (one specified with flag -stylesheet). A
stylesheet tuple (as returned by suite/0 above) can also be returned from a
test case information function. In this case the categories specified in the
style sheet can only be used in that particular test case. A test case private
style sheet is used in favor of a suite or global level style sheet.
In a tuple {stylesheet,CSSFile}, if CSSFile is specified with a path, for
example, "$TEST/styles/categories.css", this full name is used to locate the
file. However, if only the file name is specified, for example,
categories.css, the CSS file is assumed to be located in the data directory,
data_dir, of the suite. The latter use is recommended, as it is portable
compared to hard coding path names in the suite.
Argument Category in the previous example can have the value (atom)
sys_config (blue background), sys_state (yellow background), or error
(white text on red background).

 Repeating Tests

You can order Common Test to repeat the tests you specify. You can choose to
repeat tests a number of times, repeat tests for a specific period of time, or
repeat tests until a particular stop time is reached. If repetition is
controlled by time, an action for Common Test to take upon time-out can be
specified. Either Common Test performs all tests in the current run before
stopping, or it stops when the current test job is finished. Repetition can be
activated by ct_run start flags, or tuples in the ct:run:test/1 option list
argument. The flags (options in parentheses) are the following:
	-repeat N ({repeat,N}), where N is a positive integer

	-duration DurTime ({duration,DurTime}), where DurTime is the duration

	-until StopTime ({until,StopTime}), where StopTime is finish time

	-force_stop ({force_stop,true})

	-force_stop skip_rest ({force_stop,skip_rest})

	DurTime - The duration time is specified as HHMMSS, for example,
-duration 012030 or {duration,"012030"}
, which means that the tests are executed and (if time allows) repeated until
time-out occurs after 1 hour, 20 minutes, and 30 seconds.

	StopTime - The finish time can be specified as HHMMSS and is then
interpreted as a time today (or possibly tomorrow), but can also be specified
as YYMoMoDDHHMMSS, for example, -until 071001120000 or
{until,"071001120000"}. This means that the tests are executed and (if time
allows) repeated, until 12 o'clock on the 1st of October 2007.

When time-out occurs, Common Test never aborts the ongoing test case, as this
can leave the SUT in an undefined, and possibly bad, state. Instead
Common Test, by default, finishes the current test run before stopping. If
flag force_stop is specified, Common Test stops when the current test job is
finished. If flag force_stop is specified with skip_rest, Common Test only
completes the current test case and skips the remaining tests in the test job.
Note
As Common Test always finishes at least the current test case, the time
specified with duration or until is never definitive.

Log files from every repeated test run is saved in normal Common Test fashion
(described earlier).
Common Test might later support an optional feature to only store the last
(and possibly the first) set of logs of repeated test runs, but for now the user
must be careful not to run out of disk space if tests are repeated during long
periods of time.
For each test run that is part of a repeated session, information about the
particular test run is printed in the Common Test Framework Log. The
information includes the repetition number, remaining time, and so on.
Example 1:
$ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -duration 001000 -force_stop
Here, the suites in test directory to1, followed by the suites in to2, are
executed in one test run. A time-out event occurs after 10 minutes. As long as
there is time left, Common Test repeats the test run (that is, starting over
with test to1). After time-out, Common Test stops when the current job is
finished (because of flag force_stop). As a result, the specified test run can
be aborted after test to1 and before test to2.
Example 2:
$ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -duration 001000 -forces_stop skip_rest
Here, the same tests as in Example 1 are run, but with flag force_stop set to
skip_rest. If time-out occurs while executing tests in directory to1, the
remaining test cases in to1 are skipped and the test is aborted without
running the tests in to2 another time. If time-out occurs while executing
tests in directory to2, the remaining test cases in to2 are skipped and the
test is aborted.
Example 3:
$ date
Fri Sep 28 15:00:00 MEST 2007

$ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -until 160000
Here, the same test run as in the previous examples are executed (and possibly
repeated). However, when the time-out occurs, after 1 hour, Common Test
finishes the entire test run before stopping (that is, both to1 and to2 are
always executed in the same test run).
Example 4:
$ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -repeat 5
Here, the test run, including both the to1 and the to2 test, is repeated
five times.
Note
Do not confuse this feature with the repeat property of a test case group.
The options described here are used to repeat execution of entire test runs,
while the repeat property of a test case group makes it possible to repeat
execution of sets of test cases within a suite. For more information about the
latter, see section
Test Case Groups in section Writing
Test Suites.

 Silent Connections

The protocol handling processes in Common Test, implemented by ct_telnet,
ct_ssh, ct_ftp, and so on, do verbose printing to the test case logs. This
can be switched off with flag -silent_connections:
ct_run -silent_connections [conn_types]
Here, conn_types specifies SSH, Telnet, FTP, RPC, and/or SNMP.
Example 1:
ct_run ... -silent_connections ssh telnet
This switches off logging for SSH and Telnet connections.
Example 2:
ct_run ... -silent_connections
This switches off logging for all connection types.
Fatal communication error and reconnection attempts are always printed, even if
logging has been suppressed for the connection type in question. However,
operations such as sending and receiving data are performed silently.
silent_connections can also be specified in a test suite. This is accomplished
by returning a tuple, {silent_connections,ConnTypes}, in the suite/0 or test
case information list. If ConnTypes is a list of atoms (SSH, Telnet, FTP, RPC
and/or SNMP), output for any corresponding connections are suppressed. Full
logging is by default enabled for any connection of type not specified in
ConnTypes. Hence, if ConnTypes is the empty list, logging is enabled for all
connections.
Example 3:
-module(my_SUITE).

suite() -> [..., {silent_connections,[telnet,ssh]}, ...].

...

my_testcase1() ->
 [{silent_connections,[ssh]}].

my_testcase1(_) ->
 ...

my_testcase2(_) ->
 ...
In this example, suite/0 tells Common Test to suppress printouts from Telnet
and SSH connections. This is valid for all test cases. However, my_testcase1/0
specifies that for this test case, only SSH is to be silent. The result is that
my_testcase1 gets Telnet information (if any) printed in the log, but not SSH
information. my_testcase2 gets no information from either connection printed.
silent_connections can also be specified with a term in a test specification
(see section Test Specifications in
section Running Tests and Analyzing Results). Connections provided with start
flag/option silent_connections are merged with any connections listed in the
test specification.
Start flag/option silent_connections and the test specification term override
any settings made by the information functions inside the test suite.
Note
In the current Common Test version, the silent_connections feature only
works for Telnet and SSH connections. Support for other connection types can
be added in future Common Test versions.

External Configuration Data

 General

To avoid hard-coding data values related to the test and/or System Under Test
(SUT) in the test suites, the data can instead be specified through
configuration files or strings that Common Test reads before the start of a
test run. External configuration data makes it possible to change test
properties without modifying the test suites using the data. Examples of
configuration data follows:
	Addresses to the test plant or other instruments
	User login information
	Names of files needed by the test
	Names of programs to be executed during the test
	Any other variable needed by the test

 Syntax

A configuration file can contain any number of elements of the type:
{CfgVarName,Value}.
where
CfgVarName = atom()
Value = term() | [{CfgVarName,Value}]

 Requiring and Reading Configuration Data

In a test suite, one must require that a configuration variable (CfgVarName
in the previous definition) exists before attempting to read the associated
value in a test case or configuration function.
require is an assert statement, which can be part of the
Test Suite Information Function or
Test Case Information Function. If the
required variable is unavailable, the test is skipped (unless a default value
has been specified, see section
Test Case Information Function for
details). Also, function ct:require/1/2 can be called from a
test case to check if a specific variable is available. The return value from
this function must be checked explicitly and appropriate action be taken
depending on the result (for example, to skip the test case if the variable in
question does not exist).
A require statement in the test suite information case or test case
information-list is to look like {require,CfgVarName} or
{require,AliasName,CfgVarName}. The arguments AliasName and CfgVarName are
the same as the arguments to ct:require/1,2. AliasName
becomes an alias for the configuration variable, and can be used as reference to
the configuration data value. The configuration variable can be associated with
any number of alias names, but each name must be unique within the same test
suite. The two main uses for alias names follows:
	To identify connections (described later).
	To help adapt configuration data to a test suite (or test case) and improve
readability.

To read the value of a configuration variable, use function
get_config/1,2,3.
Example:
suite() ->
 [{require, domain, 'CONN_SPEC_DNS_SUFFIX'}].

...

testcase(Config) ->
 Domain = ct:get_config(domain),
 ...

 Using Configuration Variables Defined in Multiple Files

If a configuration variable is defined in multiple files and you want to access
all possible values, use function ct:get_config/3 and specify all in the
options list. The values are then returned in a list and the order of the
elements corresponds to the order that the configuration files were specified at
startup.

 Encrypted Configuration Files

Configuration files containing sensitive data can be encrypted if they must be
stored in open and shared directories.
To have Common Test encrypt a specified file using function DES3 in
application Crypto, call
ct:encrypt_config_file/2,3 The encrypted file
can then be used as a regular configuration file in combination with other
encrypted files or normal text files. However, the key for decrypting the
configuration file must be provided when running the test. This can be done with
flag/option decrypt_key or decrypt_file, or a key file in a predefined
location.
Common Test also provides decryption functions,
ct:decrypt_config_file/2,3, for recreating the
original text files.

 Opening Connections Using Configuration Data

Two different methods for opening a connection using the support functions in,
for example, ct_ssh, ct_ftp, and ct_telnet follows:
	Using a configuration target name (an alias) as reference.
	Using the configuration variable as reference.

When a target name is used for referencing the configuration data (that
specifies the connection to be opened), the same name can be used as connection
identity in all subsequent calls related to the connection (also for closing
it). Only one open connection per target name is possible. If you attempt to
open a new connection using a name already associated with an open connection,
Common Test returns the already existing handle so the previously opened
connection is used. This feature makes it possible to call the function for
opening a particular connection whenever useful. An action like this does not
necessarily open any new connections unless it is required (which could be the
case if, for example, the previous connection has been closed unexpectedly by
the server). Using named connections also removes the need to pass handle
references around in the suite for these connections.
When a configuration variable name is used as reference to the data specifying
the connection, the handle returned as a result of opening the connection must
be used in all subsequent calls (also for closing the connection). Repeated
calls to the open function with the same variable name as reference results in
multiple connections being opened. This can be useful, for example, if a test
case needs to open multiple connections to the same server on the target node
(using the same configuration data for each connection).

 User-Specific Configuration Data Formats

The user can specify configuration data on a different format than key-value
tuples in a text file, as described so far. The data can, for example, be read
from any files, fetched from the web over HTTP, or requested from a
user-specific process. To support this, Common Test provides a callback module
plugin mechanism to handle configuration data.

 Default Callback Modules for Handling Configuration Data

Common Test includes default callback modules for handling configuration data
specified in standard configuration files (described earlier) and in XML files
as follows:
	ct_config_plain - for reading configuration files with key-value tuples
(standard format). This handler is used to parse configuration files if no
user callback is specified.
	ct_config_xml - for reading configuration data from XML files.

 Using XML Configuration Files

An example of an XML configuration file follows:
<config>
 <ftp_host>
 <ftp>"targethost"</ftp>
 <username>"tester"</username>
 <password>"letmein"</password>
 </ftp_host>
 <lm_directory>"/test/loadmodules"</lm_directory>
</config>
Once read, this file produces the same configuration variables as the following
text file:
{ftp_host, [{ftp,"targethost"},
 {username,"tester"},
 {password,"letmein"}]}.

{lm_directory, "/test/loadmodules"}.

 Implement a User-Specific Handler

The user-specific handler can be written to handle special configuration file
formats. The parameter can be either file names or configuration strings (the
empty list is valid).
The callback module implementing the handler is responsible for checking the
correctness of configuration strings.
To validate the configuration strings, the callback module is to have function
Callback:check_parameter/1 exported.
The input argument is passed from Common Test, as defined in the test
specification, or specified as an option to ct_run or ct:run_test.
The return value is to be any of the following values, indicating if the
specified configuration parameter is valid:
	{ok, {file, FileName}} - the parameter is a file name and the file exists.
	{ok, {config, ConfigString}} - the parameter is a configuration string and
it is correct.
	{error, {nofile, FileName}} - there is no file with the specified name in
the current directory.
	{error, {wrong_config, ConfigString}} - the configuration string is wrong.

The function Callback:read_config/1 is to be exported from the callback module
to read configuration data, initially before the tests start, or as a result of
data being reloaded during test execution. The input argument is the same as for
function check_parameter/1.
The return value is to be either of the following:
	{ok, Config} - if the configuration variables are read successfully.
	{error, {Error, ErrorDetails}} - if the callback module fails to proceed
with the specified configuration parameters.

Config is the proper Erlang key-value list, with possible key-value sublists
as values, like the earlier configuration file example:
[{ftp_host, [{ftp, "targethost"}, {username, "tester"}, {password, "letmein"}]},
 {lm_directory, "/test/loadmodules"}]

 Examples of Configuration Data Handling

A configuration file for using the FTP client to access files on a remote host
can look as follows:
{ftp_host, [{ftp,"targethost"},
 {username,"tester"},
 {password,"letmein"}]}.

{lm_directory, "/test/loadmodules"}.
The XML version shown earlier can also be used, but it is to be explicitly
specified that the ct_config_xml callback module is to be used by
Common Test.
The following is an example of how to assert that the configuration data is
available and can be used for an FTP session:
init_per_testcase(ftptest, Config) ->
 {ok,_} = ct_ftp:open(ftp),
 Config.

end_per_testcase(ftptest, _Config) ->
 ct_ftp:close(ftp).

ftptest() ->
 [{require,ftp,ftp_host},
 {require,lm_directory}].

ftptest(Config) ->
 Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
 Local = filename:join(proplists:get_value(priv_dir,Config), "loadmodule"),
 ok = ct_ftp:recv(ftp, Remote, Local),
 ...
The following is an example of how the functions in the previous example can be
rewritten if it is necessary to open multiple connections to the FTP server:
init_per_testcase(ftptest, Config) ->
 {ok,Handle1} = ct_ftp:open(ftp_host),
 {ok,Handle2} = ct_ftp:open(ftp_host),
 [{ftp_handles,[Handle1,Handle2]} | Config].

end_per_testcase(ftptest, Config) ->
 lists:foreach(fun(Handle) -> ct_ftp:close(Handle) end,
 proplists:get_value(ftp_handles,Config)).

ftptest() ->
 [{require,ftp_host},
 {require,lm_directory}].

ftptest(Config) ->
 Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
 Local = filename:join(proplists:get_value(priv_dir,Config), "loadmodule"),
 [Handle | MoreHandles] = proplists:get_value(ftp_handles,Config),
 ok = ct_ftp:recv(Handle, Remote, Local),
 ...

 Example of User-Specific Configuration Handler

A simple configuration handling driver, asking an external server for
configuration data, can be implemented as follows:
-module(config_driver).
-export([read_config/1, check_parameter/1]).

read_config(ServerName)->
 ServerModule = list_to_atom(ServerName),
 ServerModule:start(),
 ServerModule:get_config().

check_parameter(ServerName)->
 ServerModule = list_to_atom(ServerName),
 case code:is_loaded(ServerModule) of
 {file, _}->
 {ok, {config, ServerName}};
 false->
 case code:load_file(ServerModule) of
 {module, ServerModule}->
 {ok, {config, ServerName}};
 {error, nofile}->
 {error, {wrong_config, "File not found: " ++ ServerName ++ ".beam"}}
 end
 end.
The configuration string for this driver can be config_server, if the
config_server.erl module that follows is compiled and exists in the code path
during test execution:
-module(config_server).
-export([start/0, stop/0, init/1, get_config/0, loop/0]).

-define(REGISTERED_NAME, ct_test_config_server).

start()->
 case whereis(?REGISTERED_NAME) of
 undefined->
 spawn(?MODULE, init, [?REGISTERED_NAME]),
 wait();
 _Pid->
 ok
 end,
 ?REGISTERED_NAME.

init(Name)->
 register(Name, self()),
 loop().

get_config()->
 call(self(), get_config).

stop()->
 call(self(), stop).

call(Client, Request)->
 case whereis(?REGISTERED_NAME) of
 undefined->
 {error, {not_started, Request}};
 Pid->
 Pid ! {Client, Request},
 receive
 Reply->
 {ok, Reply}
 after 4000->
 {error, {timeout, Request}}
 end
 end.

loop()->
 receive
 {Pid, stop}->
 Pid ! ok;
 {Pid, get_config}->
 {D,T} = erlang:localtime(),
 Pid !
 [{localtime, [{date, D}, {time, T}]},
 {node, erlang:node()},
 {now, erlang:now()},
 {config_server_pid, self()},
 {config_server_vsn, ?vsn}],
 ?MODULE:loop()
 end.

wait()->
 case whereis(?REGISTERED_NAME) of
 undefined->
 wait();
 _Pid->
 ok
 end.
Here, the handler also provides for dynamically reloading of configuration
variables. If ct:reload_config(localtime) is called
from the test case function, all variables loaded with
config_driver:read_config/1 are updated with their latest values, and the new
value for variable localtime is returned.

Code Coverage Analysis

 General

Although Common Test was created primarily for black-box testing, nothing
prevents it from working perfectly as a white-box testing tool as well. This is
especially true when the application to test is written in Erlang. Then the test
ports are easily realized with Erlang function calls.
When white-box testing an Erlang application, it is useful to be able to measure
the code coverage of the test. Common Test provides simple access to the OTP
Cover tool for this purpose. Common Test handles all necessary communication
with the Cover tool (starting, compiling, analysing, and so on). The
Common Test user only needs to specify the extent of the code coverage
analysis.

 Use

To specify the modules to be included in the code coverage test, provide a cover
specification file. With this file you can point out specific modules or specify
directories containing modules to be included in the analysis. You can also
specify modules to be excluded from the analysis.
If you are testing a distributed Erlang application, it is likely that code you
want included in the code coverage analysis gets executed on another Erlang node
than the one Common Test is running on. If so, you must specify these other
nodes in the cover specification file or add them dynamically to the code
coverage set of nodes. For details on the latter, see module ct_cover.
In the cover specification file you can also specify your required level of the
code coverage analysis; details or overview. In detailed mode, you get a
coverage overview page, showing per module and total coverage percentages. You
also get an HTML file printed for each module included in the analysis showing
exactly what parts of the code have been executed during the test. In overview
mode, only the code coverage overview page is printed.
You can choose to export and import code coverage data between tests. If you
specify the name of an export file in the cover specification file,
Common Test exports collected coverage data to this file at the end of the
test. You can similarly specify previously exported data to be imported and
included in the analysis for a test (multiple import files can be specified).
This way, the total code coverage can be analyzed without necessarily running
all tests at once.
To activate the code coverage support, specify the name of the cover
specification file as you start Common Test. Do this by using flag -cover
with ct_run, for example:
$ ct_run -dir $TESTOBJS/db -cover $TESTOBJS/db/config/db.coverspec
You can also pass the cover specification file name in a call to
ct:run_test/1, by adding a {cover,CoverSpec} tuple to argument Opts.
You can also enable code coverage in your test specifications (see section
Test Specifications in section
Running Tests and Analyzing Results).

 Stopping the Cover Tool When Tests Are Completed

By default, the Cover tool is automatically stopped when the tests are
completed. This causes the original (non-cover compiled) modules to be loaded
back into the test node. If a process at this point still runs old code of any
of the modules that are cover compiled, meaning that it has not done any fully
qualified function call after the cover compilation, the process is killed. To
avoid this, set the value of option cover_stop to false. This means that the
modules stay cover compiled. Therefore, this is only recommended if the Erlang
nodes under test are terminated after the test is completed, or if cover can be
manually stopped.
The option can be set by using flag -cover_stop with ct_run, by adding
{cover_stop,true|false} to argument Opts to ct:run_test/1, or by adding a
cover_stop term in the test specification (see section
Test Specifications in section
Running Tests and Analyzing Results).

 The Cover Specification File

 General Config

Here follows the general configuration terms that are allowed in a cover
specification file:
%% List of Nodes on which cover will be active during test.
%% Nodes = [atom()]
{nodes, Nodes}.

%% Files with previously exported cover data to include in analysis.
%% CoverDataFiles = [string()]
{import, CoverDataFiles}.

%% Cover data file to export from this session.
%% CoverDataFile = string()
{export, CoverDataFile}.

%% Cover analysis level.
%% Level = details | overview
{level, Level}.

%% Directories to include in cover.
%% Dirs = [string()]
{incl_dirs, Dirs}.

%% Directories, including subdirectories, to include.
{incl_dirs_r, Dirs}.

%% Specific modules to include in cover.
%% Mods = [atom()]
{incl_mods, Mods}.

%% Directories to exclude in cover.
{excl_dirs, Dirs}.

%% Directories, including subdirectories, to exclude.
{excl_dirs_r, Dirs}.

%% Specific modules to exclude in cover.
{excl_mods, Mods}.

%% Cross cover compilation
%% Tag = atom(), an identifier for a test run
%% Mod = [atom()], modules to compile for accumulated analysis
{cross,[{Tag,Mods}]}.
The terms incl_dirs_r and excl_dirs_r tell Common Test to search the
specified directories recursively and include or exclude any module found during
the search. The terms incl_dirs and excl_dirs result in a non-recursive
search for modules (that is, only modules found in the specified directories are
included or excluded).
Note
Directories containing Erlang modules to be included in a code coverage test
must exist in the code server path. Otherwise, the Cover tool fails to
recompile the modules. It is not sufficient to specify these directories in
the cover specification file for Common Test.

 OTP application Config

When using a cover specification in the testing of an OTP application itself,
there is a special incl_app directive that includes the applications modules for
the cover compilation.
{incl_app, AppName, Cover :: overview | details}.
Note
If you desire to also use some other general cover configuration together with
this option you should insert the AppName in between the option and its value
creating a three tuple.

 Cross Cover Analysis

The cross cover mechanism allows cover analysis of modules across multiple
tests. It is useful if some code, for example, a library module, is used by many
different tests and the accumulated cover result is desirable.
This can also be achieved in a more customized way by using parameter export
in the cover specification and analysing the result off line. However, the cross
cover mechanism is a built-in solution that also provides logging.
The mechanism is easiest explained by an example:
Assume that there are two systems, s1 and s2, that are tested in separate
test runs. System s1 contains a library module m1 tested by test run s1
and is included in the cover specification of s1 as follows:
s1.cover:
 {incl_mods,[m1]}.
When analysing code coverage, the result for m1 can be seen in the cover log
in the s1 test result.
Now, imagine that as m1 is a library module, it is also often used by system
s2. Test run s2 does not specifically test m1, but it can still be
interesting to see which parts of m1 that are covered by the s2 tests. To do
this, m1 can be included also in the cover specification of s2 as follows:
s2.cover:
 {incl_mods,[m1]}.
This gives an entry for m1 also in the cover log for test run s2. The
problem is that this only reflects the coverage by s2 tests, not the
accumulated result over s1 and s2. This is where the cross cover mechanism
comes in handy.
If instead the cover specification for s2 is like the following:
s2.cover:
 {cross,[{s1,[m1]}]}.
Then m1 is cover compiled in test run s2, but not shown in the coverage log.
Instead, if ct_cover:cross_cover_analyse/2 is called after both s1 and s2
test runs are completed, the accumulated result for m1 is available in the
cross cover log for test run s1.
The call to the analyze function must be as follows:
ct_cover:cross_cover_analyse(Level, [{s1,S1LogDir},{s2,S2LogDir}]).
Here, S1LogDir and S2LogDir are the directories named <TestName>.logs for
each test respectively.
Notice the tags s1 and s2, which are used in the cover specification file
and in the call to ct_cover:cross_cover_analyse/2. The purpose of these is
only to map the modules specified in the cover specification to the log
directory specified in the call to the analyze function. The tag name has no
meaning beyond this.

 Logging

To view the result of a code coverage test, click the button labeled "COVER LOG"
in the top-level index page for the test run.
Before Erlang/OTP 17.1, if your test run consisted of multiple tests, cover
would be started and stopped for each test within the test run. Separate logs
would be available through the "Coverage log" link on the test suite result
pages. These links are still available, but now they all point to the same page
as the button on the top-level index page. The log contains the accumulated
results for the complete test run. For details about this change, see the
release notes.
The button takes you to the code coverage overview page. If you have
successfully performed a detailed coverage analysis, links to each individual
module coverage page are found here.
If cross cover analysis is performed, and there are accumulated coverage results
for the current test, the link "Coverdata collected over all tests" takes you to
these results.

Using Common Test for Large-Scale Testing

 General

Large-scale automated testing requires running multiple independent test
sessions in parallel. This is accomplished by running some Common Test nodes
on one or more hosts, testing different target systems. Configuring, starting,
and controlling the test nodes independently can be a cumbersome operation. To
aid this kind of automated large-scale testing, Common Test offers a master
test node component, Common Test Master, which handles central configuration
and control in a system of distributed Common Test nodes.
The Common Test Master server runs on one dedicated Erlang node and uses
distributed Erlang to communicate with any number of Common Test test nodes,
each hosting a regular Common Test server. Test specifications are used as
input to specify what to test on which test nodes, using what configuration.
The Common Test Master server writes progress information to HTML log files
similarly to the regular Common Test server. The logs contain test statistics
and links to the log files written by each independent Common Test server.
The Common Test Master API is exported by module ct_master.

 Use

Common Test Master requires all test nodes to be on the same network and share
a common file system. Common Test Master cannot start test nodes
automatically. The nodes must be started in advance for Common Test Master to
be able to start test sessions on them.
Tests are started by calling ct_master:run(TestSpecs) or
ct_master:run(TestSpecs, InclNodes, ExclNodes)
TestSpecs is either the name of a test specification file (string) or a list
of test specifications. If it is a list, the specifications are handled (and the
corresponding tests executed) in sequence. An element in a TestSpecs list can
also be list of test specifications. The specifications in such a list are
merged into one combined specification before test execution.
Example:
ct_master:run(["ts1","ts2",["ts3","ts4"]])
Here, the tests specified by "ts1" run first, then the tests specified by "ts2",
and finally the tests specified by both "ts3" and "ts4".
The InclNodes argument to run/3 is a list of node names. Function run/3
runs the tests in TestSpecs just like run/1, but also takes any test in
TestSpecs, which is not explicitly tagged with a particular node name, and
execute it on the nodes listed in InclNodes. By using run/3 this way, any
test specification can be used, with or without node information, in a
large-scale test environment.
ExclNodes is a list of nodes to be excluded from the test. That is, tests that
are specified in the test specification to run on a particular node are not
performed if that node is listed in ExclNodes at runtime.
If Common Test Master fails initially to connect to any of the test nodes
specified in a test specification or in the InclNodes list, the operator is
prompted with the option to either start over again (after manually checking the
status of the nodes in question), to run without the missing nodes, or to abort
the operation.
When tests start, Common Test Master displays information to console about the
involved nodes. Common Test Master also reports when tests finish,
successfully or unsuccessfully. If connection is lost to a node, the test on
that node is considered finished. Common Test Master does not attempt to
re-establish contact with the failing node.
At any time, to get the current status of the test nodes, call function
ct_master:progress().
To stop one or more tests, use function
ct_master:abort() (to stop all) or
ct_master:abort(Nodes).
For details about the Common Test Master API, see module ct_master.

 Test Specifications

The test specifications used as input to Common Test Master are fully
compatible with the specifications used as input to the regular Common Test
server. The syntax is described in section
Test Specifications in section
Running Tests and Analyzing Results.
All test specification terms can have a NodeRefs element. This element
specifies which node or nodes a configuration operation or a test is to be
executed on. NodeRefs is defined as follows:
NodeRefs = all_nodes | [NodeRef] | NodeRef
NodeRef = NodeAlias | node() | master
A NodeAlias (atom/0) is used in a test specification as a reference to a
node name (so the node name only needs to be declared once, which also can be
achieved using constants). The alias is declared with a node term as follows:
{node, NodeAlias, NodeName}
If NodeRefs has the value all_nodes, the operation or test is performed on
all specified test nodes. (Declaring a term without a NodeRefs element has the
same effect). If NodeRefs has the value master, the operation is only
performed on the Common Test Master node (namely set the log directory or
install an event handler).
Consider the example in section
Test Specifications in section
Running Tests and Analysing Results, now extended with node information and
intended to be executed by Common Test Master:
{define, 'Top', "/home/test"}.
{define, 'T1', "'Top'/t1"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.
{define, 'CfgFile', "config.cfg"}.
{define, 'Node', ct_node}.

{node, node1, 'Node@host_x'}.
{node, node2, 'Node@host_y'}.

{logdir, master, "'Top'/master_logs"}.
{logdir, "'Top'/logs"}.

{config, node1, "'T1'/'CfgFile'"}.
{config, node2, "'T2'/'CfgFile'"}.
{config, "'T3'/'CfgFile'"}.

{suites, node1, 'T1', all}.
{skip_suites, node1, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
{skip_cases, node1, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
{skip_cases, node1, 'T1', t1C_SUITE, [test1], "Ignore"}.

{suites, node2, 'T2', [t2B_SUITE,t2C_SUITE]}.
{cases, node2, 'T2', t2A_SUITE, [test4,test1,test7]}.

{skip_suites, 'T3', all, "Not implemented"}.
This example specifies the same tests as the original example. But now if
started with a call to ct_master:run(TestSpecName), test t1 is executed on
node ct_node@host_x (node1), test t2 on ct_node@host_y (node2) and
test t3 on both node1 and node2. Configuration file t1 is only read on
node1 and configuration file t2 only on node2, while the configuration
file t3 is read on both node1 and node2. Both test nodes write log files
to the same directory. (However, the Common Test Master node uses a different
log directory than the test nodes.)
If the test session is instead started with a call to
ct_master:run(TestSpecName, [ct_node@host_z], [ct_node@host_x]), the result is
that test t1 does not run on ct_node@host_x (or any other node) while test
t3 runs on both ct_node@host_y and ct_node@host_z.
A nice feature is that a test specification that includes node information can
still be used as input to the regular Common Test server (as described in
section Test Specifications). The
result is that any test specified to run on a node with the same name as the
Common Test node in question (typically ct@somehost if started with the
ct_run program), is performed. Tests without explicit node association are
always performed too, of course.

 Automatic Startup of Test Target Nodes

Initial actions can be started and performed automatically on test target nodes
using test specification term init.
Two subterms are supported, node_start and eval.
Example:
{node, node1, node1@host1}.
{node, node2, node1@host2}.
{node, node3, node2@host2}.
{node, node4, node1@host3}.
{init, node1, [{node_start, [{callback_module, my_slave_callback}]}]}.
{init, [node2, node3], {node_start, [{username, "ct_user"}, {password, "ct_password"}]}}.
{init, node4, {eval, {module, function, []}}}.
This test specification declares that node1@host1 is to be started using the
user callback function callback_module:my_slave_callback/0, and nodes
node1@host2 and node2@host2 are to be started with the default callback
module ct_slave. The specified username and password are used to log on to
remote host host2. Also, function module:function/0 is evaluated on
node1@host3, and the result of this call is printed to the log.
The default callback module ct_slave, has the following features:
	Starting Erlang target nodes on local or remote hosts (application SSH is
used for communication).
	Ability to start an Erlang emulator with more flags (any flags supported by
erl are supported).
	Supervision of a node being started using internal callback functions. Used to
prevent hanging nodes. (Configurable.)
	Monitoring of the master node by the slaves. A slave node can be stopped if
the master node terminates. (Configurable.)
	Execution of user functions after a slave node is started. Functions can be
specified as a list of {Module, Function, Arguments} tuples.

Note
An eval term for the node and startup_functions in the node_start
options list can be specified. In this case, the node is started first, then
the startup_functions are executed, and finally functions specified with
eval are called.

Event Handling

 General

The operator of a Common Test system can receive event notifications
continuously during a test run. For example, Common Test reports when a test
case starts and stops, the current count of successful, failed, and skipped
cases, and so on. This information can be used for different purposes such as
logging progress and results in another format than HTML, saving statistics to a
database for report generation, and test system supervision.
Common Test has a framework for event handling based on the OTP event manager
concept and gen_event behavior. When the Common Test server starts, it
spawns an event manager. During test execution the manager gets a notification
from the server when something of potential interest happens. Any event handler
plugged into the event manager can match on events of interest, take action, or
pass the information on. The event handlers are Erlang modules implemented by
the Common Test user according to the gen_event behavior (for details, see
module gen_event and section gen_event Behaviour
in OTP Design Principles in the System Documentation).
A Common Test server always starts an event manager. The server also plugs in
a default event handler, which only purpose is to relay notifications to a
globally registered Common Test Master event manager (if a Common Test
Master server is running in the system). The Common Test Master also spawns an
event manager at startup. Event handlers plugged into this manager receives the
events from all the test nodes, plus information from the Common Test Master
server.
User-specific event handlers can be plugged into a Common Test event manager,
either by telling Common Test to install them before the test run (described
later), or by adding the handlers dynamically during the test run using
gen_event:add_handler/3 or gen_event:add_sup_handler/3. In the latter
scenario, the reference of the Common Test event manager is required. To get
it, call ct:get_event_mgr_ref/0 or (on the Common Test Master node)
ct_master:get_event_mgr_ref/0.

 Use

Event handlers can be installed by an event_handler start flag
(ct_run) or option ct:run_test/1, where the argument
specifies the names of one or more event handler modules.
Example:
$ ct_run -suite test/my_SUITE -event_handler handlers/my_evh1 handlers/my_evh2 -pa $PWD/handlers
To pass start arguments to the event handler init function, use option
ct_run -event_handler_init instead of -event_handler.
Note
All event handler modules must have gen_event behavior. These modules must
be precompiled and their locations must be added explicitly to the Erlang code
server search path (as in the previous example).

An event_handler tuple in argument Opts has the following definition (see
ct:run_test/1):
{event_handler,EventHandlers}

EventHandlers = EH | [EH]
EH = atom() | {atom(),InitArgs} | {[atom()],InitArgs}
InitArgs = [term()]
In the following example, two event handlers for the my_SUITE test are
installed:
1> ct:run_test([{suite,"test/my_SUITE"},{event_handler,[my_evh1,{my_evh2,[node()]}]}]).
Event handler my_evh1 is started with [] as argument to the init function.
Event handler my_evh2 is started with the name of the current node in the init
argument list.
Event handlers can also be plugged in using one of the following
test specification terms:
	{event_handler, EventHandlers}
	{event_handler, EventHandlers, InitArgs}
	{event_handler, NodeRefs, EventHandlers}
	{event_handler, NodeRefs, EventHandlers, InitArgs}

EventHandlers is a list of module names. Before a test session starts, the
init function of each plugged in event handler is called (with the InitArgs
list as argument or [] if no start arguments are specified).
To plug in a handler to the Common Test Master event manager, specify master
as the node in NodeRefs.
To be able to match on events, the event handler module must include the header
file ct_event.hrl. An event is a record with the following definition:
#event{name, node, data}
	name - Label (type) of the event.

	node - Name of the node that the event originated from (only relevant
for Common Test Master event handlers).

	data - Specific for the event.

 General Events

The general events are as follows:
	#event{name = start_logging, data = LogDir} - LogDir = string(),
top-level log directory for the test run.
This event indicates that the logging process of Common Test has started
successfully and is ready to receive I/O messages.

	#event{name = stop_logging, data = []} - This event indicates that the
logging process of Common Test was shut down at the end of the test run.

	#event{name = test_start, data = {StartTime,LogDir}} -
StartTime = {date(),time()}, test run start date and time.
LogDir = string(), top-level log directory for the test run.
This event indicates that Common Test has finished initial preparations and
begins executing test cases.

	#event{name = test_done, data = EndTime} - EndTime = {date(),time()},
date and time the test run finished.
This event indicates that the last test case has been executed and
Common Test is shutting down.

	#event{name = start_info, data = {Tests,Suites,Cases}} -
Tests = integer(), number of tests.
Suites = integer(), total number of suites.
Cases = integer() | unknown, total number of test cases.
This event gives initial test run information that can be interpreted as:
"This test run will execute Tests separate tests, in total containing
Cases number of test cases, in Suites number of suites". However, if a
test case group with a repeat property exists in any test, the total number of
test cases cannot be calculated (unknown).

	#event{name = tc_start, data = {Suite,FuncOrGroup}} - Suite = atom(),
name of the test suite.
FuncOrGroup = Func | {Conf,GroupName,GroupProperties}
Func = atom(), name of test case or configuration function.
Conf = init_per_group | end_per_group, group configuration function.
GroupName = atom(), name of the group.
GroupProperties = list(), list of execution properties for the group.
This event informs about the start of a test case, or a group configuration
function. The event is sent also for init_per_suite and end_per_suite, but
not for init_per_testcase and end_per_testcase. If a group configuration
function starts, the group name and execution properties are also specified.

	#event{name = tc_logfile, data = {{Suite,Func},LogFileName}} -
Suite = atom(), name of the test suite.
Func = atom(), name of test case or configuration function.
LogFileName = string(), full name of the test case log file.
This event is sent at the start of each test case (and configuration function
except init/end_per_testcase) and carries information about the full name
(that is, the file name including the absolute directory path) of the current
test case log file.

	#event{name = tc_done, data = {Suite,FuncOrGroup,Result}} - Suite = atom(), name of the suite.
FuncOrGroup = Func | {Conf,GroupName,GroupProperties}
Func = atom(), name of test case or configuration function.
Conf = init_per_group | end_per_group, group configuration function.
GroupName = unknown | atom(), name of the group (unknown if init- or end
function times out).
GroupProperties = list(), list of execution properties for the group.
Result = ok | {auto_skipped,SkipReason} | {skipped,SkipReason} | {failed,FailReason},
the result.

SkipReason = {require_failed,RequireInfo} | {require_failed_in_suite0,RequireInfo} | {failed,{Suite,init_per_testcase,FailInfo}} | UserTerm,
why the case was skipped.

FailReason = {error,FailInfo} | {error,{RunTimeError,StackTrace}} | {timetrap_timeout,integer()} | {failed,{Suite,end_per_testcase,FailInfo}},
reason for failure.
RequireInfo = {not_available,atom() | tuple()}, why require failed.
FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} | UserTerm,
error details.
RunTimeError = term(), a runtime error, for example, badmatch or undef.
StackTrace = list(), list of function calls preceding a runtime error.
UserTerm = term(), any data specified by user, or exit/1
information.
This event informs about the end of a test case or a configuration function
(see event tc_start for details on element FuncOrGroup). With this event
comes the final result of the function in question. It is possible to
determine on the top level of Result if the function was successful, skipped
(by the user), or if it failed.
It is also possible to dig deeper and, for example, perform pattern matching
on the various reasons for skipped or failed. Notice that {'EXIT',Reason}
tuples are translated into {error,Reason}. Notice also that if a
{failed,{Suite,end_per_testcase,FailInfo} result is received, the test case
was successful, but end_per_testcase for the case failed.

	#event{name = tc_auto_skip, data = {Suite,TestName,Reason}} - Suite = atom(), the name of the suite.
TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} | {end_per_group,GroupName} | {FuncName,GroupName} | FuncName
FuncName = atom(), the name of the test case or configuration function.
GroupName = atom(), the name of the test case group.
Reason = {failed,FailReason} | {require_failed_in_suite0,RequireInfo},
reason for auto-skipping Func.
FailReason = {Suite,ConfigFunc,FailInfo}} | {Suite,FailedCaseInSequence},
reason for failure.
RequireInfo = {not_available,atom() | tuple()}, why require failed.
ConfigFunc = init_per_suite | init_per_group
FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} | bad_return | UserTerm,
error details.
FailedCaseInSequence = atom(), the name of a case that failed in a sequence.
RunTimeError = term(), a runtime error, for example badmatch or undef.
StackTrace = list(), list of function calls preceding a runtime error.
UserTerm = term(), any data specified by user, or exit/1
information.
This event is sent for every test case or configuration function that
Common Test has skipped automatically because of either a failed
init_per_suite or init_per_group, a failed require in suite/0, or a
failed test case in a sequence. Notice that this event is never received as a
result of a test case getting skipped because of init_per_testcase failing,
as that information is carried with event tc_done. If a failed test case
belongs to a test case group, the second data element is a tuple
{FuncName,GroupName}, otherwise only the function name.

	#event{name = tc_user_skip, data = {Suite,TestName,Comment}} - Suite = atom(), the name of the suite.
TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} | {end_per_group,GroupName} | {FuncName,GroupName} | FuncName
FuncName = atom(), the name of the test case or configuration function.
GroupName = atom(), the name of the test case group.
Comment = string(), why the test case was skipped.
This event specifies that a test case was skipped by the user. It is only
received if the skip is declared in a test specification. Otherwise, user skip
information is received as a {skipped,SkipReason} result in event tc_done
for the test case. If a skipped test case belongs to a test case group, the
second data element is a tuple {FuncName,GroupName}, otherwise only the
function name.

	#event{name = test_stats, data = {Ok,Failed,Skipped}} -
Ok = integer(), current number of successful test cases.
Failed = integer(), current number of failed test cases.
Skipped = {UserSkipped,AutoSkipped}
UserSkipped = integer(), current number of user-skipped test cases.
AutoSkipped = integer(), current number of auto-skipped test cases.
This is a statistics event with current count of successful, skipped, and
failed test cases so far. This event is sent after the end of each test case,
immediately following event tc_done.

 Internal Events

The internal events are as follows:
	#event{name = start_make, data = Dir} - Dir = string(), running make
in this directory.
This internal event says that Common Test starts compiling modules in
directory Dir.

	#event{name = finished_make, data = Dir} - Dir = string(), finished
running make in this directory.
This internal event says that Common Test is finished compiling modules in
directory Dir.

	#event{name = start_write_file, data = FullNameFile} -
FullNameFile = string(), full name of the file.
This internal event is used by the Common Test Master process to synchronize
particular file operations.

	#event{name = finished_write_file, data = FullNameFile} -
FullNameFile = string(), full name of the file.
This internal event is used by the Common Test Master process to synchronize
particular file operations.

 Notes

The events are also documented in ct_event.erl. This module can serve as an
example of what an event handler for the Common Test event manager can look
like.
Note
To ensure that printouts to stdout (or printouts made with
ct:log/2,3 or ct:pal,2,3) get written to the
test case log file, and not to the Common Test framework log, you can
synchronize with the Common Test server by matching on events tc_start and
tc_done. In the period between these events, all I/O is directed to the test
case log file. These events are sent synchronously to avoid potential timing
problems (for example, that the test case log file is closed just before an
I/O message from an external process gets through). Knowing this, you need to
be careful that your handle_event/2 callback function does not stall the
test execution, possibly causing unexpected behavior as a result.

Dependencies between Test Cases and Suites

 General

When creating test suites, it is strongly recommended to not create dependencies
between test cases, that is, letting test cases depend on the result of previous
test cases. There are various reasons for this, such as, the following:
	It makes it impossible to run test cases individually.
	It makes it impossible to run test cases in a different order.
	It makes debugging difficult (as a fault can be the result of a problem in a
different test case than the one failing).
	There are no good and explicit ways to declare dependencies, so it can be
difficult to see and understand these in test suite code and in test logs.
	Extending, restructuring, and maintaining test suites with test case
dependencies is difficult.

There are often sufficient means to work around the need for test case
dependencies. Generally, the problem is related to the state of the System Under
Test (SUT). The action of one test case can change the system state. For some
other test case to run properly, this new state must be known.
Instead of passing data between test cases, it is recommended that the test
cases read the state from the SUT and perform assertions (that is, let the test
case run if the state is as expected, otherwise reset or fail). It is also
recommended to use the state to set variables necessary for the test case to
execute properly. Common actions can often be implemented as library functions
for test cases to call to set the SUT in a required state. (Such common actions
can also be separately tested, if necessary, to ensure that they work as
expected). It is sometimes also possible, but not always desirable, to group
tests together in one test case, that is, let a test case perform a "scenario"
test (a test consisting of subtests).
Consider, for example, a server application under test. The following
functionality is to be tested:
	Starting the server
	Configuring the server
	Connecting a client to the server
	Disconnecting a client from the server
	Stopping the server

There are obvious dependencies between the listed functions. The server cannot
be configured if it has not first been started, a client cannot be connected
until the server is properly configured, and so on. If we want to have one test
case for each function, we might be tempted to try to always run the test cases
in the stated order and carry possible data (identities, handles, and so on)
between the cases and therefore introduce dependencies between them.
To avoid this, we can consider starting and stopping the server for every test.
We can thus implement the start and stop action as common functions to be called
from init_per_testcase and
end_per_testcase. (Remember to test the
start and stop functionality separately.) The configuration can also be
implemented as a common function, maybe grouped with the start function.
Finally, the testing of connecting and disconnecting a client can be grouped
into one test case. The resulting suite can look as follows:
-module(my_server_SUITE).
-compile(export_all).
-include_lib("ct.hrl").

%%% init and end functions...

suite() -> [{require,my_server_cfg}].

init_per_testcase(start_and_stop, Config) ->
 Config;

init_per_testcase(config, Config) ->
 [{server_pid,start_server()} | Config];

init_per_testcase(_, Config) ->
 ServerPid = start_server(),
 configure_server(),
 [{server_pid,ServerPid} | Config].

end_per_testcase(start_and_stop, _) ->
 ok;

end_per_testcase(_, Config) ->
 ServerPid = proplists:get_value(server_pid, Config),
 stop_server(ServerPid).

%%% test cases...

all() -> [start_and_stop, config, connect_and_disconnect].

%% test that starting and stopping works
start_and_stop(_) ->
 ServerPid = start_server(),
 stop_server(ServerPid).

%% configuration test
config(Config) ->
 ServerPid = proplists:get_value(server_pid, Config),
 configure_server(ServerPid).

%% test connecting and disconnecting client
connect_and_disconnect(Config) ->
 ServerPid = proplists:get_value(server_pid, Config),
 {ok,SessionId} = my_server:connect(ServerPid),
 ok = my_server:disconnect(ServerPid, SessionId).

%%% common functions...

start_server() ->
 {ok,ServerPid} = my_server:start(),
 ServerPid.

stop_server(ServerPid) ->
 ok = my_server:stop(),
 ok.

configure_server(ServerPid) ->
 ServerCfgData = ct:get_config(my_server_cfg),
 ok = my_server:configure(ServerPid, ServerCfgData),
 ok.

 Saving Configuration Data

Sometimes it is impossible, or infeasible, to implement independent test cases.
Maybe it is not possible to read the SUT state. Maybe resetting the SUT is
impossible and it takes too long time to restart the system. In situations where
test case dependency is necessary, CT offers a structured way to carry data from
one test case to the next. The same mechanism can also be used to carry data
from one test suite to the next.
The mechanism for passing data is called save_config. The idea is that one
test case (or suite) can save the current value of Config, or any list of
key-value tuples, so that the next executing test case (or test suite) can read
it. The configuration data is not saved permanently but can only be passed from
one case (or suite) to the next.
To save Config data, return tuple {save_config,ConfigList} from
end_per_testcase or from the main test case function.
To read data saved by a previous test case, use proplists:get_value with a
saved_config key as follows:
{Saver,ConfigList} = proplists:get_value(saved_config, Config)
Saver (atom/0) is the name of the previous test case (where the data was
saved). The proplists:get_value function can be used to extract particular
data also from the recalled ConfigList. It is strongly recommended that
Saver is always matched to the expected name of the saving test case. This
way, problems because of restructuring of the test suite can be avoided. Also,
it makes the dependency more explicit and the test suite easier to read and
maintain.
To pass data from one test suite to another, the same mechanism is used. The
data is to be saved by finction end_per_suite
and read by function init_per_suite in the
suite that follows. When passing data between suites, Saver carries the name
of the test suite.
Example:
-module(server_b_SUITE).
-compile(export_all).
-include_lib("ct.hrl").

%%% init and end functions...

init_per_suite(Config) ->
 %% read config saved by previous test suite
 {server_a_SUITE,OldConfig} = proplists:get_value(saved_config, Config),
 %% extract server identity (comes from server_a_SUITE)
 ServerId = proplists:get_value(server_id, OldConfig),
 SessionId = connect_to_server(ServerId),
 [{ids,{ServerId,SessionId}} | Config].

end_per_suite(Config) ->
 %% save config for server_c_SUITE (session_id and server_id)
 {save_config,Config}

%%% test cases...

all() -> [allocate, deallocate].

allocate(Config) ->
 {ServerId,SessionId} = proplists:get_value(ids, Config),
 {ok,Handle} = allocate_resource(ServerId, SessionId),
 %% save handle for deallocation test
 NewConfig = [{handle,Handle}],
 {save_config,NewConfig}.

deallocate(Config) ->
 {ServerId,SessionId} = proplists:get_value(ids, Config),
 {allocate,OldConfig} = proplists:get_value(saved_config, Config),
 Handle = proplists:get_value(handle, OldConfig),
 ok = deallocate_resource(ServerId, SessionId, Handle).
To save Config data from a test case that is to be skipped, return tuple
{skip_and_save,Reason,ConfigList}.
The result is that the test case is skipped with Reason printed to the log
file (as described earlier) and ConfigList is saved for the next test case.
ConfigList can be read using proplists:get_value(saved_config, Config), as
described earlier. skip_and_save can also be returned from init_per_suite.
In this case, the saved data can be read by init_per_suite in the suite that
follows.

 Sequences

Sometimes test cases depend on each other so that if one case fails, the
following tests are not to be executed. Typically, if the save_config facility
is used and a test case that is expected to save data crashes, the following
case cannot run. Common Test offers a way to declare such dependencies, called
sequences.
A sequence of test cases is defined as a test case group with a sequence
property. Test case groups are defined through function groups/0 in the test
suite (for details, see section
Test Case Groups.
For example, to ensure that if allocate in server_b_SUITE crashes,
deallocate is skipped, the following sequence can be defined:
groups() -> [{alloc_and_dealloc, [sequence], [alloc,dealloc]}].
Assume that the suite contains the test case get_resource_status that is
independent of the other two cases, then function all can look as follows:
all() -> [{group,alloc_and_dealloc}, get_resource_status].
If alloc succeeds, dealloc is also executed. If alloc fails however,
dealloc is not executed but marked as SKIPPED in the HTML log.
get_resource_status runs no matter what happens to the alloc_and_dealloc
cases.
Test cases in a sequence are executed in order until all succeed or one fails.
If one fails, all following cases in the sequence are skipped. The cases in the
sequence that have succeeded up to that point are reported as successful in the
log. Any number of sequences can be specified.
Example:
groups() -> [{scenarioA, [sequence], [testA1, testA2]},
 {scenarioB, [sequence], [testB1, testB2, testB3]}].

all() -> [test1,
 test2,
 {group,scenarioA},
 test3,
 {group,scenarioB},
 test4].
A sequence group can have subgroups. Such subgroups can have any property, that
is, they are not required to also be sequences. If you want the status of the
subgroup to affect the sequence on the level above, return
{return_group_result,Status} from
end_per_group/2, as described in section
Repeated Groups in Writing Test Suites.
A failed subgroup (Status == failed) causes the execution of a sequence to
fail in the same way a test case does.

Common Test Hooks

 General

The Common Test Hook (CTH) framework allows extensions of the default behavior
of Common Test using hooks before and after all test suite calls. CTHs allow
advanced Common Test users to abstract out behavior that is common to multiple
test suites without littering all test suites with library calls. This can be
used for logging, starting, and monitoring external systems, building C files
needed by the tests, and so on.
In brief, CTH allows you to do the following:
	Manipulate the runtime configuration before each suite configuration call.
	Manipulate the return of all suite configuration calls, and in extension, the
result of the tests themselves.

The following sections describe how to use CTHs, when they are run, and how to
manipulate the test results in a CTH.
Warning
When executing within a CTH, all timetraps are shut off. So if your CTH never
returns, the entire test run is stalled.

 Installing a CTH

A CTH can be installed in multiple ways in your test run. You can do it for all
tests in a run, for specific test suites, and for specific groups within a test
suite. If you want a CTH to be present in all test suites within your test run,
there are three ways to accomplish that, as follows:
	Add -ct_hooks as an argument to ct_run. To add
multiple CTHs using this method, append them to each other using the keyword
and, that is, ct_run -ct_hooks cth1 [{debug,true}] and cth2
	Add tag ct_hooks to your
Test Specification.
	Add tag ct_hooks to your call to ct:run_test/1.

CTHs can also be added within a test suite. This is done by returning
{ct_hooks,[CTH]} in the configuration list from
suite/0,
init_per_suite/1, or
init_per_group/2.
In this case, CTH can either be only the module name of the CTH or a tuple
with the module name and the initial arguments, and optionally the hook priority
of the CTH. For example, one of the following:
	{ct_hooks,[my_cth_module]}
	{ct_hooks,[{my_cth_module,[{debug,true}]}]}
	{ct_hooks,[{my_cth_module,[{debug,true}],500}]}

Note that regardless of how you install a CTH, its BEAM file must be available
in the code path when Common Test runs. ct_run accepts the -pa command line
option.

 Overriding CTHs

By default, each installation of a CTH causes a new instance of it to be
activated. This can cause problems if you want to override CTHs in test
specifications while still having them in the suite information function. The
id/1 callback exists to address this problem. By returning
the same id in both places, Common Test knows that this CTH is already
installed and does not try to install it again.

 CTH Execution Order

By default, each installed CTH is executed in the order in which they are
installed for init calls, and then reversed for end calls. This order can be
referred to as test-centric, as the order is reversed after a testcase is
executed and corresponds to the default value (test) of ct_hooks_order
option.
The installation-based order is not always desired, so Common Test allows the
user to specify a priority for each hook. The priority can be specified in the
CTH function init/2 or when installing the hook. The
priority specified at installation overrides the priority returned by the CTH.
In some cases, the reversed order for all end calls is not desired, and instead,
the user might prefer the reversed order for post hook calls. Such behavior can
be enabled with ct_hooks_order option with config value. When this option is
enabled, the execution order is configuration-centric, as the reversed order
happens after each configuration function and not in relation to testcase.
Note that the ct_hooks_order option is considered as a global framework
setting. In case when option is configured multiple times framework with process
only the first value.
The ct_hooks_order option can be set as: ct_run argument, in test
specification or suite/0 return value.

 CTH Scope

Once the CTH is installed into a certain test run it remains there until its
scope is expired. The scope of a CTH depends on when it is installed, see the
following table. Function init/2 is called at the
beginning of the scope and function terminate/1 is
called when the scope ends.
	CTH installed in	CTH scope begins before	CTH scope ends after
	ct_run	the first test suite is to be run	the last test suite has been run
	ct:run_test	the first test suite is run	the last test suite has been run
	Test Specification	the first test suite is run	the last test suite has been run
	suite/0	pre_init_per_suite/3 is called	post_end_per_suite/4 has been called for that test suite
	init_per_suite/1	post_init_per_suite/4 is called	post_end_per_suite/4 has been called for that test suite
	init_per_group/2	post_init_per_group/5 is called	post_end_per_group/5 has been called for that group

Table: Scope of a CTH

 CTH Processes and Tables

CTHs are run with the same process scoping as normal test suites, that is, a
different process executes the init_per_suite hooks then the init_per_group
or per_testcase hooks. So if you want to spawn a process in the CTH, you
cannot link with the CTH process, as it exits after the post hook ends. Also, if
you for some reason need an ETS table with your CTH, you must spawn a process
that handles it.

 External Configuration Data and Logging

Configuration data values in the CTH can be read by calling
ct:get_config/1,2,3 (as explained in section
Requiring and Reading Configuration Data).
The configuration variables in question must, as always, first have been
required by a suite-, group-, or test case information function, or by function
ct:require/1/2. The latter can also be used in CT hook
functions.
The CT hook functions can call any logging function in the ct interface to
print information to the log files, or to add comments in the suite overview
page.

 Manipulating Tests

Through CTHs the results of tests and configuration functions can be
manipulated. The main purpose to do this with CTHs is to allow common patterns
to be abstracted out from test suites and applied to multiple test suites
without duplicating any code. All the callback functions for a CTH follow a
common interface described hereafter.
Common Test always calls all available hook functions, even pre- and post
hooks for configuration functions that are not implemented in the suite. For
example, pre_init_per_suite(x_SUITE, ...) and
post_init_per_suite(x_SUITE, ...) are called for test suite x_SUITE, even if
it does not export init_per_suite/1. With this feature hooks can be used as
configuration fallbacks, and all configuration functions can be replaced with
hook functions.

 Pre Hooks

In a CTH, the behavior can be hooked in before the following functions:
	init_per_suite
	init_per_group
	init_per_testcase
	end_per_testcase
	end_per_group
	end_per_suite

This is done in the CTH functions called pre_<name of function>. These
functions take the arguments SuiteName, Name (group or test case name, if
applicable), Config, and CTHState. The return value of the CTH function is
always a combination of a result for the suite/group/test and an updated
CTHState.
To let the test suite continue on executing, return the configuration list that
you want the test to use as the result.
All pre hooks, except pre_end_per_testcase/4, can skip or fail the test by
returning a tuple with skip or fail, and a reason as the result.
Example:
pre_init_per_suite(SuiteName, Config, CTHState) ->
 case db:connect() of
 {error,_Reason} ->
 {{fail, "Could not connect to DB"}, CTHState};
 {ok, Handle} ->
 {[{db_handle, Handle} | Config], CTHState#state{ handle = Handle }}
 end.
Note
If you use multiple CTHs, the first part of the return tuple is used as input
for the next CTH. So in the previous example the next CTH can get
{fail,Reason} as the second parameter. If you have many CTHs interacting, do
not let each CTH return fail or skip. Instead, return that an action is to
be taken through the Config list and implement a CTH that, at the end, takes
the correct action.

 Post Hooks

In a CTH, behavior can be hooked in after the following functions:
	init_per_suite
	init_per_group
	init_per_testcase
	end_per_testcase
	end_per_group
	end_per_suite

This is done in the CTH functions called post_<name of function>. These
functions take the arguments SuiteName, Name (group or test case name, if
applicable), Config, Return, and CTHState. Config in this case is the
same Config as the testcase is called with. Return is the value returned by
the testcase. If the testcase fails by crashing, Return is
{'EXIT',{{Error,Reason},Stacktrace}}.
The return value of the CTH function is always a combination of a result for the
suite/group/test and an updated CTHState. If you do not want the callback to
affect the outcome of the test, return the Return data as it is given to the
CTH. You can also modify the test result. By returning the Config list with
element tc_status removed, you can recover from a test failure. As in all the
pre hooks, it is also possible to fail/skip the test case in the post hook.
Example:
post_end_per_testcase(_Suite, _TC, Config, {'EXIT',{_,_}}, CTHState) ->
 case db:check_consistency() of
 true ->
 %% DB is good, pass the test.
 {proplists:delete(tc_status, Config), CTHState};
 false ->
 %% DB is not good, mark as skipped instead of failing
 {{skip, "DB is inconsistent!"}, CTHState}
 end;
post_end_per_testcase(_Suite, _TC, Config, Return, CTHState) ->
 %% Do nothing if tc does not crash.
 {Return, CTHState}.
Note
Do recover from a testcase failure using CTHs only a last resort. If used
wrongly, it can be very difficult to determine which tests that pass or fail
in a test run.

 Skip and Fail Hooks

After any post hook has been executed for all installed CTHs,
on_tc_fail or
on_tc_skip is called if the testcase failed or was
skipped, respectively. You cannot affect the outcome of the tests any further at
this point.

 Synchronizing External User Applications with Common Test

CTHs can be used to synchronize test runs with external user applications. The
init function can, for example, start and/or communicate with an application
that has the purpose of preparing the SUT for an upcoming test run, or
initialize a database for saving test data to during the test run. The terminate
function can similarly order such an application to reset the SUT after the test
run, and/or tell the application to finish active sessions and terminate. Any
system error- or progress reports generated during the init- or termination
stage are saved in the
Pre- and Post Test I/O Log. (This is
also true for any printouts made with ct:log/2 and ct:pal/2).
To ensure that Common Test does not start executing tests, or closes its log
files and shuts down, before the external application is ready for it,
Common Test can be synchronized with the application. During startup and
shutdown, Common Test can be suspended, simply by having a CTH evaluate a
receive expression in the init- or terminate function. The macros
?CT_HOOK_INIT_PROCESS (the process executing the hook init function) and
?CT_HOOK_TERMINATE_PROCESS (the process executing the hook terminate function)
each specifies the name of the correct Common Test process to send a message
to. This is done to return from the receive. These macros are defined in
ct.hrl.

 Example CTH

The following CTH logs information about a test run into a format parseable by
file:consult/1 (in Kernel):
%%% Common Test Example Common Test Hook module.
%%%
%%% To use this hook, on the command line:
%%% ct_run -suite example_SUITE -pa . -ct_hooks example_cth
%%%
%%% Note `-pa .`: the hook beam file must be in the code path when installing.
-module(example_cth).

%% Mandatory Callbacks
-export([init/2]).

%% Optional Callbacks
-export([id/1]).

-export([pre_init_per_suite/3]).
-export([post_end_per_suite/4]).

-export([pre_init_per_testcase/4]).
-export([post_end_per_testcase/5]).

-export([on_tc_skip/4]).

-export([terminate/1]).

%% This hook state is threaded through all the callbacks.
-record(state, {filename, total, suite_total, ts, tcs, data, skipped}).
%% This example hook prints its results to a file, see terminate/1.
-record(test_run, {total, skipped, suites}).

%% Return a unique id for this CTH.
%% Using the filename means the hook can be used with different
%% log files to separate timing data within the same test run.
%% See Installing a CTH for more information.
id(Opts) ->
 %% the path is relative to the test run directory
 proplists:get_value(filename, Opts, "example_cth.log").

%% Always called before any other callback function. Use this to initiate
%% any common state.
init(Id, _Opts) ->
 {ok, #state{filename = Id, total = 0, data = []}}.

%% Called before init_per_suite is called.
pre_init_per_suite(_Suite,Config,State) ->
 {Config, State#state{suite_total = 0, tcs = []}}.

%% Called after end_per_suite.
post_end_per_suite(Suite,_Config,Return,State) ->
 Data = {suites, Suite, State#state.suite_total,
 lists:reverse(State#state.tcs)},
 {Return, State#state{data = [Data | State#state.data],
 total = State#state.total + State#state.suite_total}}.

%% Called before each init_per_testcase.
pre_init_per_testcase(_Suite,_TC,Config,State) ->
 Now = erlang:monotonic_time(microsecond),
 {Config, State#state{ts = Now, suite_total = State#state.suite_total + 1}}.

%% Called after each end_per_testcase.
post_end_per_testcase(Suite,TC,_Config,Return,State) ->
 Now = erlang:monotonic_time(microsecond),
 TCInfo = {testcase, Suite, TC, Return, Now - State#state.ts},
 {Return, State#state{ts = undefined, tcs = [TCInfo | State#state.tcs]}}.

%% Called when a test case is skipped by either user action
%% or due to an init function failing.
on_tc_skip(_Suite, _TC, _Reason, State) ->
 State#state{skipped = State#state.skipped + 1}.

%% Called when the scope of the CTH is done.
terminate(State) ->
 %% use append to avoid data loss if the path is reused
 {ok, File} = file:open(State#state.filename, [write, append]),
 io:format(File, "~p.~n", [results(State)]),
 file:close(File),
 ok.

results(State) ->
 #state{skipped = Skipped, data = Data, total = Total} = State,
 #test_run{total = Total, skipped = Skipped, suites = lists:reverse(Data)}.

 Built-In CTHs

Common Test is delivered with some general-purpose CTHs that can be enabled by
the user to provide generic testing functionality. Some of these CTHs are
enabled by default when common_test is started to run. They can be disabled by
setting enable_builtin_hooks to false on the command line or in the test
specification. The following two CTHs are delivered with Common Test:
	cth_log_redirect - Built-in
Captures all log events that would normally be printed by the default logger
handler, and prints them to the current test case log. If an event cannot be
associated with a test case, it is printed in the Common Test framework log.
This happens for test cases running in parallel and events occurring
in-between test cases.
The log events are handled using a Logger handler called
cth_log_redirect. The formatting and level is copied from the current
default handler when the cth is started. If you want to use another level
either change the default handler level before starting common_test, or use
the logger:set_handler_config/3 API.
This hook supports the following options:
	{mode, add} - Add cth_log_redirect to the default logging handler:
Logs will be emitted to both standard output via the default handler, and
into the Common Test HTML logs. This is the default behaviour.

	{mode, replace} - Replace the default logging handler with
cth_log_redirect instead of logging to both the default handler and this
handler. This effectively silences any logger output which would normally be
printed to standard output during test runs. To enable this mode, you can
pass the following options to ct_run:
-enable_builtin_hooks false -ct_hooks cth_log_redirect [{mode,replace}]

	cth_surefire - Not built-in
Captures all test results and outputs them as surefire XML into a file. The
created file is by default called junit_report.xml. The file name can be
changed by setting option path for this hook, for example:
-ct_hooks cth_surefire [{path,"/tmp/report.xml"}]
If option url_base is set, an extra attribute named url is added to each
testsuite and testcase XML element. The value is constructed from
url_base and a relative path to the test suite or test case log,
respectively, for example:
-ct_hooks cth_surefire [{url_base, "http://myserver.com/"}]
gives an URL attribute value similar to
"http://myserver.com/ct_run.ct@myhost.2012-12-12_11.19.39/ x86_64-unknown-linux-gnu.my_test.logs/run.2012-12-12_11.19.39/suite.log.html"
Surefire XML can, for example, be used by Jenkins to display test results.

Some Thoughts about Testing

 Goals

It is not possible to prove that a program is correct by testing. On the
contrary, it has been formally proven that it is impossible to prove programs in
general by testing. Theoretical program proofs or plain examination of code can
be viable options for those wishing to certify that a program is correct. The
test server, as it is based on testing, cannot be used for certification. Its
intended use is instead to (cost effectively) find bugs. A successful test
suite is one that reveals a bug. If a test suite results in OK, then we know
very little that we did not know before.

 What to Test

There are many kinds of test suites. Some concentrate on calling every function
or command (in the documented way) in a certain interface. Some others do the
same, but use all kinds of illegal parameters, and verify that the server stays
alive and rejects the requests with reasonable error codes. Some test suites
simulate an application (typically consisting of a few modules of an
application), some try to do tricky requests in general, and some test suites
even test internal functions with help of special Load Modules on target.
Another interesting category of test suites is the one checking that fixed bugs
do not reoccur. When a bugfix is introduced, a test case that checks for that
specific bug is written and submitted to the affected test suites.
Aim for finding bugs. Write whatever test that has the highest probability of
finding a bug, now or in the future. Concentrate more on the critical parts.
Bugs in critical subsystems are much more expensive than others.
Aim for functionality testing rather than implementation details. Implementation
details change quite often, and the test suites are to be long lived.
Implementation details often differ on different platforms and versions. If
implementation details must be tested, try to factor them out into separate test
cases. These test cases can later be rewritten or skipped.
Also, aim for testing everything once, no less, no more. It is not effective
having every test case fail only because one function in the interface changed.

Common Test's Property Testing Support: ct_property_test

 General

The Common Test Property Testing Support (ct_property_test) is an aid to run
property based testing tools in Common Test test suites.
Basic knowledge of property based testing is assumed in the following. It is
also assumed that at least one of the following property based testing tools is
installed and available in the library path:
	QuickCheck,
	PropEr or
	Triq

 What Is Supported?

The ct_property_test module does the following:
	Compiles the files with property tests in the subdirectory property_test
	Tests properties in those files using the first found Property Testing Tool.
	Saves the results - that is the printouts - in the usual Common Test Log

 Introductory Example

Assume that we want to test the lists:sort/1 function.
We need a property to test the function. In normal way, we create
property_test/ct_prop.erl module in the test directory in our application:
-module(ct_prop).
-export([prop_sort/0]).

%%% This will include the .hrl file for the installed testing tool:
-include_lib("common_test/include/ct_property_test.hrl").

%%% The property we want to check:
%%% For all possibly unsorted lists,
%%% the result of lists:sort/1 is sorted.
prop_sort() ->
 ?FORALL(UnSorted, list(),
 is_sorted(lists:sort(UnSorted))
).

%%% Function to check that a list is sorted:
is_sorted([]) ->
 true;
is_sorted([_]) ->
 true;
is_sorted([H1,H2|SortedTail]) when H1 =< H2 ->
 is_sorted([H2|SortedTail]);
is_sorted(_) ->
 false.
We also need a CommonTest test suite:
-module(ct_property_test_SUITE).
-compile(export_all). % Only in tests!

-include_lib("common_test/include/ct.hrl").

all() -> [prop_sort
].

%%% First prepare Config and compile the property tests for the found tool:
init_per_suite(Config) ->
 ct_property_test:init_per_suite(Config).

end_per_suite(Config) ->
 Config.

%%%==
%%% Test suites
%%%
prop_sort(Config) ->
 ct_property_test:quickcheck(
 ct_prop:prop_sort(),
 Config
).
We run it as usual, for example with ct_run in the OS shell:
..../test$ ct_run -suite ct_property_test_SUITE
.....
Common Test: Running make in test directories...

TEST INFO: 1 test(s), 1 case(s) in 1 suite(s)

Testing lib.common_test.ct_property_test_SUITE: Starting test, 1 test cases

--
2019-12-18 10:44:46.293
Found property tester proper
at "/home/X/lib/proper/ebin/proper.beam"

--
2019-12-18 10:44:46.294
Compiling in "/home/..../test/property_test"
 Deleted: ["ct_prop.beam"]
 ErlFiles: ["ct_prop.erl"]
 MacroDefs: [{d,'PROPER'}]

Testing lib.common_test.ct_property_test_SUITE: TEST COMPLETE, 1 ok, 0 failed of 1 test cases

....

 A stateful testing example

Assume a test that generates some parallel stateful commands, and runs 300
tests:
prop_parallel(Config) ->
 numtests(300,
 ?FORALL(Cmds, parallel_commands(?MODULE),
 begin
 RunResult = run_parallel_commands(?MODULE, Cmds),
 ct_property_test:present_result(?MODULE, Cmds, RunResult, Config)
 end)).
The ct_property_test:present_result/4 is a help function for printing some
statistics in the CommonTest log file.
Our example test could for example be a simple test of an ftp server, where we
perform get, put and delete requests, some of them in parallel. Per default, the
result has three sections:
*** User 2019-12-11 13:28:17.504 ***

Distribution sequential/parallel

 57.7% sequential
 28.0% parallel_2
 14.3% parallel_1

*** User 2019-12-11 13:28:17.505 ***

Function calls

 44.4% get
 39.3% put
 16.3% delete

*** User 2019-12-11 13:28:17.505 ***

Length of command sequences

Range : Number in range
-------:----------------
 0 - 4: 8 2.7% <-- min=3
 5 - 9: 44 14.7%
10 - 14: 74 24.7%
15 - 19: 60 20.0% <-- mean=18.7 <-- median=16.0
20 - 24: 38 12.7%
25 - 29: 26 8.7%
30 - 34: 19 6.3%
35 - 39: 19 6.3%
40 - 44: 8 2.7%
45 - 49: 4 1.3% <-- max=47

 300
The first part - Distribution sequential/parallel - shows the distribution in
the sequential and parallel part of the result of parallel_commands/1. See any
property testing tool for an explanation of this function. The table shows that
of all commands (get and put in our case), 57.7% are executed in the sequential
part prior to the parallel part, 28.0% are executed in the first parallel list
and the rest in the second parallel list.
The second part - Function calls - shows the distribution of the three calls
in the generated command lists. We see that all of the three calls are executed.
If it was so that we thought that we also generated a fourth call, a table like
this shows that we failed with that.
The third and final part - Length of command sequences - show statistics of
the generated command sequences. We see that the shortest list has three
elementes while the longest has 47 elements. The mean and median values are also
shown. Further we could for example see that only 2.7% of the lists (that is
eight lists) only has three or four elements.

ct_run

Program used for starting Common Test from the OS command line.

 Description

The ct_run program is automatically installed with Erlang/OTP and the
Common Test application (for more information, see section
Installation in the User's Guide). The program accepts
different start flags. Some flags trigger ct_run to start Common Test and
pass on data to it. Some flags start an Erlang node prepared for running
Common Test in a particular mode.
The interface function ct:run_test/1, corresponding to the ct_run program,
is used for starting Common Test from the Erlang shell (or an Erlang program).
For details, see the ct manual page.
ct_run also accepts Erlang emulator flags. These are used when ct_run calls
erl to start the Erlang node (this makes it possible to add directories to the
code server path, change the cookie on the node, start more applications, and so
on).
With the optional flag -erl_args, options on the ct_run command line can be
divided into two groups:
	One group that Common Test is to process (those preceding -erl_args).
	One group that Common Test is to ignore and pass on directly to the emulator
(those following -erl_args).

Options preceding -erl_args that Common Test does not recognize are also
passed on to the emulator untouched. By -erl_args the user can specify flags
with the same name, but with different destinations, on the ct_run command
line.
If flags -pa or -pz are specified in the Common Test group of options
(preceding -erl_args), relative directories are converted to absolute and
reinserted into the code path by Common Test. This is to avoid problems
loading user modules when Common Test changes working directory during test
runs. However, Common Test ignores flags -pa and -pz following -erl_args
on the command line. These directories are added to the code path normally (that
is, on specified form).
Exit status is set before the program ends. Value 0 indicates a successful
test result, 1 indicates one or more failed or auto-skipped test cases, and
2 indicates test execution failure.
If ct_run is called with option -help, it prints all valid start flags to
stdout.

 Run Tests from Command Line

 ct_run -dir TestDir1 TestDir2 .. TestDirN |
 [-dir TestDir] -suite Suite1 Suite2 .. SuiteN
 [-group Groups1 Groups2 .. GroupsN] [-case Case1 Case2 .. CaseN]
 [-step [config | keep_inactive]]
 [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]
 [-label Label]
 [-logdir LogDir]
 [-logopts LogOpts]
 [-verbosity GenVLevel | [Category1 VLevel1 and
 Category2 VLevel2 and .. CategoryN VLevelN]]
 [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
 [-stylesheet CSSFile]
 [-cover CoverCfgFile]
 [-cover_stop Bool]
 [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
 [-event_handler_init EvHandler1 InitArg1 and
 EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
 [-include InclDir1 InclDir2 .. InclDirN]
 [-no_auto_compile]
 [-abort_if_missing_suites]
 [-multiply_timetraps Multiplier]
 [-scale_timetraps]
 [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
 [-repeat N] |
 [-duration HHMMSS [-force_stop [skip_rest]]] |
 [-until [YYMoMoDD]HHMMSS [-force_stop [skip_rest]]]
 [-basic_html]
 [-no_esc_chars]
 [-keep_logs all | NLogs]
 [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
 CTHModuleN CTHOptsN]
 [-ct_hooks_order test | config]
 [-exit_status ignore_config]
 [-help]

 Run Tests using Test Specification

 ct_run -spec TestSpec1 TestSpec2 .. TestSpecN
 [-join_specs]
 [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. and CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]
 [-label Label]
 [-logdir LogDir]
 [-logopts LogOpts]
 [-verbosity GenVLevel | [Category1 VLevel1 and
 Category2 VLevel2 and .. CategoryN VLevelN]]
 [-allow_user_terms]
 [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
 [-stylesheet CSSFile]
 [-cover CoverCfgFile]
 [-cover_stop Bool]
 [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
 [-event_handler_init EvHandler1 InitArg1 and
 EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
 [-include InclDir1 InclDir2 .. InclDirN]
 [-no_auto_compile]
 [-abort_if_missing_suites]
 [-multiply_timetraps Multiplier]
 [-scale_timetraps]
 [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
 [-repeat N] |
 [-duration HHMMSS [-force_stop [skip_rest]]] |
 [-until [YYMoMoDD]HHMMSS [-force_stop [skip_rest]]]
 [-basic_html]
 [-no_esc_chars]
 [-keep_logs all | NLogs]
 [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
 CTHModuleN CTHOptsN]
 [-ct_hooks_order test | config]
 [-exit_status ignore_config]

 Refresh HTML Index Files

 ct_run -refresh_logs [-logdir LogDir] [-basic_html]
 [-keep_logs all | NLogs]

 Run Common Test in Interactive Mode

 ct_run -shell
 [-config ConfigFile1 ConfigFile2 ... ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. and CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]

 Start a Common Test Master Node

 ct_run -ctmaster

 See Also

For information about the start flags, see section
Running Tests and Analyzing Results in the User's Guide.

ct

Main user interface for the Common Test framework.
Main user interface for the Common Test framework.
This module implements the command-line interface for running tests and basic
functions for Common Test case issues, such as configuration and logging.
The framework stores configuration values in a property list usually named
Config. The list contains information about the test run added by the
framework itself and may also contain user-provided values. The configuration is
passed into individual test cases as well as support functions if defined.
Possible configuration variables include:
	data_dir - Data file directory
	priv_dir - Scratch file directory
	Whatever added by init_per_suite/1 or
init_per_testcase/2 in the test suite.

Warning
The ?config macro, used to receive individual config values from the
Config property list, is deprecated. Please use proplists:get_value/2-3
instead.

 Summary

 Types

 ct_cover - common_test v1.27

ct_cover

Common Test framework code coverage support module.
Common Test framework code coverage support module.
This module exports help functions for performing code coverage analysis.

 Summary

 Functions

 ct_ftp - common_test v1.27

ct_ftp

FTP client module (based on the FTP application).
FTP client module (based on the ftp application).

 Summary

 Types

 ct_hooks - common_test v1.27

ct_hooks behaviour

A callback interface on top of Common Test.
The Common Test Hook (CTH) framework allows extensions of the default behavior
of Common Test by callbacks before and after all test suite calls. It is
intended for advanced users of Common Test who want to abstract out behavior
that is common to multiple test suites.
In brief, CTH allows you to:
	Manipulate the runtime configuration before each suite configuration call.
	Manipulate the return of all suite configuration calls and by extension the
result of the test themselves.

The following sections describe the mandatory and optional CTH functions that
Common Test calls during test execution. For more details, see section
Common Test Hooks in the User's Guide.
For information about how to add a CTH to your suite, see section
Installing a CTH in the User's Guide.
Note
For a minimal example of a CTH, see section
Example CTH in the User's Guide.

 Summary

 Callbacks

 ct_master - common_test v1.27

ct_master

Distributed test execution control for Common Test.
Distributed test execution control for Common Test.
This module exports functions for running Common Test nodes on multiple hosts
in parallel.

 Summary

 Types

 ct_netconfc - common_test v1.27

ct_netconfc

NETCONF client module.
NETCONF client module compliant with RFC 6241, NETCONF Configuration Protocol,
and RFC 6242, Using the NETCONF Configuration Protocol over Secure SHell (SSH),
and with support for RFC 5277, NETCONF Event Notifications.

Connecting to a NETCONF server
Call connect/1,2 to establish a connection to a server, then
pass the returned handle to session/1-3 to establish a NETCONF
session on a new SSH channel. Each call to session/1-3
establishes a new session on the same connection, and results in a hello message
to the server.
Alternately, open/1,2 can be used to establish a single session on
a dedicated connection. (Or, equivalently, only_open/1,2
followed by hello/1-3.)
Connect/session options can be specified in a configuration file with entries
like the following.
{server_id(), [option()]}.
The server_id/0 or an associated ct:target_name/0 can then be passed to
the aforementioned functions to use the referenced configuration.

Signaling
Protocol operations in the NETCONF protocol are realized as remote procedure
calls (RPCs) from client to server and a corresponding reply from server to
client. RPCs are sent using like-named functions (eg.
edit_config/3-5 to send an edit-config RPC), with the
server reply as return value. There are functions for each RPC defined in RFC
6241 and the create-subscription RPC from RFC 5277, all of which are wrappers on
send_rpc/2,3, that can be used to send an arbitrary RPC not
defined in RFC 6241 or RFC 5277.
All of the signaling functions have one variant with a Timeout argument and
one without, corresponding to an infinite timeout. The latter is inappropriate
in most cases since a non-response by the server or a missing message-id causes
the call to hang indefinitely.

Logging
The NETCONF server uses error_logger for logging of NETCONF traffic. A special
purpose error handler is implemented in ct_conn_log_h. To use this error
handler, add the cth_conn_log hook in the test suite, for example:
suite() ->
 [{ct_hooks, [{cth_conn_log, [{ct:conn_log_mod(), ct:conn_log_options()}]}]}].
conn_log_mod() is the name of the Common Test module implementing the
connection protocol, for example, ct_netconfc.
Hook option log_type specifies the type of logging:
	raw - The sent and received NETCONF data is logged to a separate text
file "as is" without any formatting. A link to the file is added to the test
case HTML log.

	pretty - The sent and received NETCONF data is logged to a separate text
file with XML data nicely indented. A link to the file is added to the test
case HTML log.

	html (default) - The sent and received NETCONF traffic is pretty printed
directly in the test case HTML log.

	silent - NETCONF traffic is not logged.

By default, all NETCONF traffic is logged in one single log file. However,
different connections can be logged in separate files. To do this, use hook
option hosts and list the names of the servers/connections to be used in the
suite. The connections must be named for this to work, that is, they must be
opened with open/2.
Option hosts has no effect if log_type is set to html or silent.
The hook options can also be specified in a configuration file with
configuration variable ct_conn_log:
{ct_conn_log,[{ct:conn_log_mod(), ct:conn_log_options()}]}.
For example:
{ct_conn_log,[{ct_netconfc,[{log_type,pretty},
 {hosts,[ct:key_or_name()]}]}]}
Note
Hook options specified in a configuration file overwrite the hard-coded hook
options in the test suite.

Logging Example 1:

The following ct_hooks statement causes pretty printing of NETCONF traffic to
separate logs for the connections named nc_server1 and nc_server2. Any other
connections are logged to default NETCONF log.
suite() ->
 [{ct_hooks, [{cth_conn_log, [{ct_netconfc,[{log_type,pretty}},
 {hosts,[nc_server1,nc_server2]}]}
]}]}].
Connections must be opened as follows:
open(nc_server1,[...]),
open(nc_server2,[...]).
Logging Example 2:

The following configuration file causes raw logging of all NETCONF traffic in to
one single text file:
{ct_conn_log,[{ct_netconfc,[{log_type,raw}]}]}.
The ct_hooks statement must look as follows:
suite() ->
 [{ct_hooks, [{cth_conn_log, []}]}].
The same ct_hooks statement without the configuration file would cause HTML
logging of all NETCONF connections in to the test case HTML log.

 Summary

 Types

 ct_property_test - common_test v1.27

ct_property_test

Support in Common Test for running property-based tests.
This module helps running property-based tests in the Common Test framework.
One (or more) of the property testing tools
	QuickCheck,
	PropEr or
	Triq

is assumed to be installed.
The idea with this module is to have a Common Test test suite calling a
property testing tool with special property test suites as defined by that tool.
The tests are collected in the test directory of the application. The test
directory has a subdirectory property_test, where everything needed for the
property tests are collected. The usual Erlang application directory structure
is assumed.
A typical Common Test test suite using ct_property_test is organized as
follows:
-module(my_prop_test_SUITE).
-compile(export_all).

-include_lib("common_test/include/ct.hrl").

all() -> [prop_ftp_case].

init_per_suite(Config) ->
 ct_property_test:init_per_suite(Config).

%%%---- test case
prop_ftp_case(Config) ->
 ct_property_test:quickcheck(
 ftp_simple_client_server:prop_ftp(),
 Config
).
and the the property test module (in this example
ftp_simple_client_server.erl) as almost a usual property testing module (More
examples are in the User's Guide):
-module(ftp_simple_client_server).
-export([prop_ftp/0...]).

-include_lib("common_test/include/ct_property_test.hrl").

prop_ftp() ->
 ?FORALL(....

 Summary

 Types

 ct_rpc - common_test v1.27

ct_rpc

Common Test specific layer on Erlang/OTP rpc.
Common Test specific layer on Erlang/OTP rpc.

 Summary

 Functions

 ct_slave - common_test v1.27

ct_slave

Common Test framework functions for starting and stopping nodes for Large-Scale
Testing.
Common Test framework functions for starting and stopping nodes for
Large-Scale Testing.
This module exports functions used by the Common Test Master to start and stop
"slave" nodes. It is the default callback module for the {init, node_start}
term in the Test Specification.

 Summary

 Types

 ct_snmp - common_test v1.27

ct_snmp

Common Test user interface module for the SNMP application.
Common Test user interface module for the SNMP application.
The purpose of this module is to simplify SNMP configuration for the test case
writer. Many test cases can use default values for common operations and then no
SNMP configuration files need to be supplied. When it is necessary to change
particular configuration parameters, a subset of the relevant SNMP configuration
files can be passed to ct_snmp by Common Test configuration files. For more
specialized configuration parameters, a simple SNMP configuration file can be
placed in the test suite data directory. To simplify the test suite,
Common Test keeps track of some of the SNMP manager information. This way the
test suite does not have to handle as many input parameters as if it had to
interface wthe OTP SNMP manager directly.
Configurable SNMP Manager and Agent Parameters:
Manager configuration:
	[{start_manager, boolean()} - Optional. Default is true.

	{users, [{user_name(), [call_back_module(), user_data()]}]} - Optional.

	{usm_users, [{usm_user_name(), [usm_config()]}]} - Optional. SNMPv3
only.

	{managed_agents,[{agent_name(), [user_name(), agent_ip(), agent_port(), [agent_config()]]}]} -
managed_agents is optional.

	{max_msg_size, integer()} - Optional. Default is 484.

	{mgr_port, integer()} - Optional. Default is 5000.

	{engine _id, string()} - Optional. Default is "mgrEngine".

Agent configuration:
	{start_agent, boolean()} - Optional. Default is false.

	{agent_sysname, string()} - Optional. Default is "ct_test".

	{agent_manager_ip, manager_ip()} - Optional. Default is localhost.

	{agent_vsns, list()} - Optional. Default is [v2].

	{agent_trap_udp, integer()} - Optional. Default is 5000.

	{agent_udp, integer()} - Optional. Default is 4000.

	{agent_notify_type, atom()} - Optional. Default is trap.

	{agent_sec_type, sec_type()} - Optional. Default is none.

	{agent_passwd, string()} - Optional. Default is "".

	{agent_engine_id, string()} - Optional. Default is "agentEngine".

	{agent_max_msg_size, string()} - Optional. Default is 484.

The following parameters represents the SNMP configuration files context.conf,
standard.conf, community.conf, vacm.conf, usm.conf, notify.conf,
target_addr.conf, and target_params.conf. Notice that all values in
agent.conf can be modified by the parameters listed above. All these
configuration files have default values set by the SNMP application. These
values can be overridden by suppling a list of valid configuration values or a
file located in the test suites data directory, which can produce a list of
valid configuration values if you apply function file:consult/1 to the file.
	{agent_contexts, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_community, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_sysinfo, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_vacm, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_usm, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_notify_def, [term()] | {data_dir_file, rel_path()}} - Optional.

	{agent_target_address_def, [term()] | {data_dir_file, rel_path()}} -
Optional.

	{agent_target_param_def, [term()] | {data_dir_file, rel_path()}} -
Optional.

Parameter MgrAgentConfName in the functions is to be a name you allocate in
your test suite using a require statement. Example (where
MgrAgentConfName = snmp_mgr_agent):
suite() -> [{require, snmp_mgr_agent, snmp}].
or
ct:require(snmp_mgr_agent, snmp).
Notice that USM users are needed for SNMPv3 configuration and are not to be
confused with users.
SNMP traps, inform, and report messages are handled by the user callback module.
For details, see the SNMP application.
It is recommended to use the .hrl files created by the Erlang/OTP MIB compiler
to define the Object Identifiers (OIDs). For example, to get the Erlang node
name from erlNodeTable in the OTP-MIB:
Oid = ?erlNodeEntry ++ [?erlNodeName, 1]
Furthermore, values can be set for SNMP application configuration parameters,
config, server, net_if, and so on (for a list of valid parameters and
types, see the User's Guide for the SNMP application).
This is done by defining a configuration data variable on the following form:
{snmp_app, [{manager, [snmp_app_manager_params()]},
 {agent, [snmp_app_agent_params()]}]}.
A name for the data must be allocated in the suite using require (see the
example above). Pass this name as argument SnmpAppConfName to
ct_snmp:start/3. ct_snmp specifies default values for some
SNMP application configuration parameters (such as {verbosity,trace} for
parameter config). This set of defaults is merged with the parameters
specified by the user. The user values override ct_snmp defaults.

 Summary

 Types

 ct_ssh - common_test v1.27

ct_ssh

SSH/SFTP client module.
This module uses application SSH, which provides detailed information about,
for example, functions, types, and options.
Argument Server in the SFTP functions is only to be used for SFTP sessions
that have been started on existing SSH connections (that is, when the original
connection type is ssh). Whenever the connection type is sftp, use the SSH
connection reference only.
The following options are valid for specifying an SSH/SFTP connection (that is,
can be used as configuration elements):
[{ConnType, Addr},
 {port, Port},
 {user, UserName}
 {password, Pwd}
 {user_dir, String}
 {public_key_alg, PubKeyAlg}
 {connect_timeout, Timeout}
 {key_cb, KeyCallbackMod}]
ConnType = ssh | sftp.
For other types, see ssh.
All time-out parameters in ct_ssh functions are values in milliseconds.

 Summary

 Types

 ct_suite - common_test v1.27

ct_suite behaviour

-behaviour(ct_suite).
The following section describes the mandatory and optional test suite functions
that Common Test calls during test execution. For more details, see section
Writing Test Suites in the User's Guide.

 Summary

 Types

 ct_telnet - common_test v1.27

ct_telnet

Common Test specific layer on top of Telnet client ct_telnet_client.erl
Common Test specific layer on top of Telnet client ct_telnet_client.erl.
Use this module to set up Telnet connections, send commands, and perform string
matching on the result. For information about how to use ct_telnet and
configure connections, specifically for UNIX hosts, see the unix_telnet
manual page.
Default values defined in ct_telnet:

	Connection timeout (time to wait for connection) = 10 seconds
	Command timeout (time to wait for a command to return) = 10 seconds
	Max number of reconnection attempts = 3
	Reconnection interval (time to wait in between reconnection attempts) = 5
seconds
	Keep alive (sends NOP to the server every 8 sec if connection is idle) =
true
	Polling limit (max number of times to poll to get a remaining string
terminated) = 0
	Polling interval (sleep time between polls) = 1 second
	The TCP_NODELAY option for the telnet socket is disabled (set to false) per
default

These parameters can be modified by the user with the following configuration
term:
{telnet_settings, [{connect_timeout,Millisec},
 {command_timeout,Millisec},
 {reconnection_attempts,N},
 {reconnection_interval,Millisec},
 {keep_alive,Bool},
 {poll_limit,N},
 {poll_interval,Millisec},
 {tcp_nodelay,Bool}]}.
Millisec = integer(), N = integer()
Enter the telnet_settings term in a configuration file included in the test
and ct_telnet retrieves the information automatically.
keep_alive can be specified per connection, if necessary. For details, see
unix_telnet.

 Logging

The default logging behavior of ct_telnet is to print information about
performed operations, commands, and their corresponding results to the test case
HTML log. The following is not printed to the HTML log: text strings sent from
the Telnet server that are not explicitly received by a ct_telnet function,
such as expect/3. However, ct_telnet can be configured to use
a special purpose event handler, implemented in ct_conn_log_h, for logging
all Telnet traffic. To use this handler, install a Common Test hook named
cth_conn_log. Example (using the test suite information function):
suite() ->
 [{ct_hooks, [{cth_conn_log, [{conn_mod(),hook_options()}]}]}].
conn_mod() is the name of the Common Test module implementing the connection
protocol, that is, ct_telnet.
The cth_conn_log hook performs unformatted logging of Telnet data to a
separate text file. All Telnet communication is captured and printed, including
any data sent from the server. The link to this text file is located at the top
of the test case HTML log.
By default, data for all Telnet connections is logged in one common file (named
default), which can get messy, for example, if multiple Telnet sessions are
running in parallel. Therefore a separate log file can be created for each
connection. To configure this, use hook option hosts and list the names of the
servers/connections to be used in the suite. The connections must be named for
this to work (see ct_telnet:open/1,2,3,4).
Hook option log_type can be used to change the cth_conn_log behavior. The
default value of this option is raw, which results in the behavior described
above. If the value is set to html, all Telnet communication is printed to the
test case HTML log instead.
All cth_conn_log hook options described can also be specified in a
configuration file with configuration variable ct_conn_log.
Example:
{ct_conn_log, [{ct_telnet,[{log_type,raw},
 {hosts,[key_or_name()]}]}]}
Note
Hook options specified in a configuration file overwrite any hard-coded hook
options in the test suite.

Logging Example:
The following ct_hooks statement causes printing of Telnet traffic to separate
logs for the connections server1 and server2. Traffic for any other
connections is logged in the default Telnet log.
suite() ->
 [{ct_hooks,
 [{cth_conn_log, [{ct_telnet,[{hosts,[server1,server2]}]}]}]}].
As previously explained, this specification can also be provided by an entry
like the following in a configuration file:
{ct_conn_log, [{ct_telnet,[{hosts,[server1,server2]}]}]}.
In this case the ct_hooks statement in the test suite can look as follows:
suite() ->
 [{ct_hooks, [{cth_conn_log, []}]}].

 See Also

unix_telnet

 Summary

 Types

 ct_testspec - common_test v1.27

ct_testspec

Parsing of test specifications for Common Test.
Parsing of test specifications for Common Test.
This module exports help functions for parsing of test specifications.

 Summary

 Functions

 unix_telnet - common_test v1.27

unix_telnet

Callback module for ct_telnet, for connecting to a Telnet server on a UNIX host.
Callback module for ct_telnet, for connecting to a Telnet server on a UNIX
host.
It requires the following entry in the configuration file:
{unix,[{telnet,HostNameOrIpAddress},
 {port,PortNum}, % optional
 {username,UserName},
 {password,Password},
 {keep_alive,Bool}]}. % optional
To communicate through Telnet to the host specified by HostNameOrIpAddress,
use the interface functions in ct_telnet, for example, open(Name) and
cmd(Name,Cmd).
Name is the name you allocated to the Unix host in your require statement,
for example:
suite() -> [{require,Name,{unix,[telnet]}}].
or
ct:require(Name,{unix,[telnet]}).
The "keep alive" activity (that is, that Common Test sends NOP to the server
every 10 seconds if the connection is idle) can be enabled or disabled for one
particular connection as described her